ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iom Unicode version

Definition df-iom 4683
Description: Define the class of natural numbers as the smallest inductive set, which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82.

Note: the natural numbers  om are a subset of the ordinal numbers df-on 4459. Later, when we define complex numbers, we will be able to also define a subset of the complex numbers (df-inn 9111) with analogous properties and operations, but they will be different sets.

We are unable to use the terms finite ordinal and natural number interchangeably, as shown at exmidonfin 7372. (Contributed by NM, 6-Aug-1994.) Use its alias dfom3 4684 instead for naming consistency with set.mm. (New usage is discouraged.)

Assertion
Ref Expression
df-iom  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-iom
StepHypRef Expression
1 com 4682 . 2  class  om
2 c0 3491 . . . . . 6  class  (/)
3 vx . . . . . . 7  setvar  x
43cv 1394 . . . . . 6  class  x
52, 4wcel 2200 . . . . 5  wff  (/)  e.  x
6 vy . . . . . . . . 9  setvar  y
76cv 1394 . . . . . . . 8  class  y
87csuc 4456 . . . . . . 7  class  suc  y
98, 4wcel 2200 . . . . . 6  wff  suc  y  e.  x
109, 6, 4wral 2508 . . . . 5  wff  A. y  e.  x  suc  y  e.  x
115, 10wa 104 . . . 4  wff  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
1211, 3cab 2215 . . 3  class  { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
1312cint 3923 . 2  class  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
141, 13wceq 1395 1  wff  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Colors of variables: wff set class
This definition is referenced by:  dfom3  4684
  Copyright terms: Public domain W3C validator