ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.39 Unicode version

Theorem pm4.39 812
Description: Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.39  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ( ph  \/  ps )  <->  ( ch  \/  th ) ) )

Proof of Theorem pm4.39
StepHypRef Expression
1 simpl 108 . 2  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ph  <->  ch ) )
2 simpr 109 . 2  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ps  <->  th ) )
31, 2orbi12d 783 1  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ( ph  \/  ps )  <->  ( ch  \/  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator