HomeHome Intuitionistic Logic Explorer
Theorem List (p. 9 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 801-900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempm2.81 801 Theorem *2.81 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ps  ->  ( ch  ->  th )
 )  ->  ( ( ph  \/  ps )  ->  ( ( ph  \/  ch )  ->  ( ph  \/  th ) ) ) )
 
Theorempm2.82 802 Theorem *2.82 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  \/  ps )  \/  ch )  ->  ( ( (
 ph  \/  -.  ch )  \/  th )  ->  (
 ( ph  \/  ps )  \/  th ) ) )
 
Theorempm3.2ni 803 Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
 |- 
 -.  ph   &    |-  -.  ps   =>    |-  -.  ( ph  \/  ps )
 
Theoremorabs 804 Absorption of redundant internal disjunct. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 28-Feb-2014.)
 |-  ( ph  <->  ( ( ph  \/  ps )  /\  ph )
 )
 
Theoremoranabs 805 Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005.) (Proof shortened by Wolf Lammen, 10-Nov-2013.)
 |-  ( ( ( ph  \/  -.  ps )  /\  ps )  <->  ( ph  /\  ps ) )
 
Theoremordi 806 Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( ph  \/  ( ps  /\  ch )
 ) 
 <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch ) ) )
 
Theoremordir 807 Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ch ) 
 <->  ( ( ph  \/  ch )  /\  ( ps 
 \/  ch ) ) )
 
Theoremandi 808 Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
 |-  ( ( ph  /\  ( ps  \/  ch ) )  <-> 
 ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
 
Theoremandir 809 Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  \/  ps )  /\  ch ) 
 <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )
 
Theoremorddi 810 Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ( ch  /\  th ) )  <-> 
 ( ( ( ph  \/  ch )  /\  ( ph  \/  th ) ) 
 /\  ( ( ps 
 \/  ch )  /\  ( ps  \/  th ) ) ) )
 
Theoremanddi 811 Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  \/  ps )  /\  ( ch  \/  th ) )  <-> 
 ( ( ( ph  /\ 
 ch )  \/  ( ph  /\  th ) )  \/  ( ( ps 
 /\  ch )  \/  ( ps  /\  th ) ) ) )
 
Theorempm4.39 812 Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th ) )  ->  ( ( ph  \/  ps )  <->  ( ch  \/  th ) ) )
 
Theoremanimorl 813 Conjunction implies disjunction with one common formula (1/4). (Contributed by BJ, 4-Oct-2019.)
 |-  ( ( ph  /\  ps )  ->  ( ph  \/  ch ) )
 
Theoremanimorr 814 Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.)
 |-  ( ( ph  /\  ps )  ->  ( ch  \/  ps ) )
 
Theoremanimorlr 815 Conjunction implies disjunction with one common formula (3/4). (Contributed by BJ, 4-Oct-2019.)
 |-  ( ( ph  /\  ps )  ->  ( ch  \/  ph ) )
 
Theoremanimorrl 816 Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
 |-  ( ( ph  /\  ps )  ->  ( ps  \/  ch ) )
 
Theorempm4.72 817 Implication in terms of biconditional and disjunction. Theorem *4.72 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Jan-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ps  <->  ( ph  \/  ps ) ) )
 
Theorempm5.16 818 Theorem *5.16 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |- 
 -.  ( ( ph  <->  ps )  /\  ( ph  <->  -.  ps ) )
 
Theorembiort 819 A disjunction with a true formula is equivalent to that true formula. (Contributed by NM, 23-May-1999.)
 |-  ( ph  ->  ( ph 
 <->  ( ph  \/  ps ) ) )
 
1.2.7  Stable propositions
 
Syntaxwstab 820 Extend wff definition to include stability.
 wff STAB  ph
 
Definitiondf-stab 821 Propositions where a double-negative can be removed are called stable. See Chapter 2 [Moschovakis] p. 2.

Our notation for stability is a connective STAB which we place before the formula in question. For example, STAB  x  =  y corresponds to " x  =  y is stable".

(Contributed by David A. Wheeler, 13-Aug-2018.)

 |-  (STAB 
 ph 
 <->  ( -.  -.  ph  -> 
 ph ) )
 
Theoremstbid 822 The equivalent of a stable proposition is stable. (Contributed by Jim Kingdon, 12-Aug-2022.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (STAB  ps  <-> STAB  ch )
 )
 
Theoremstabnot 823 Every negated formula is stable. (Contributed by David A. Wheeler, 13-Aug-2018.)
 |- STAB  -.  ph
 
1.2.8  Decidable propositions
 
Syntaxwdc 824 Extend wff definition to include decidability.
 wff DECID  ph
 
Definitiondf-dc 825 Propositions which are known to be true or false are called decidable. The (classical) Law of the Excluded Middle corresponds to the principle that all propositions are decidable, but even given intuitionistic logic, particular kinds of propositions may be decidable (for example, the proposition that two natural numbers are equal will be decidable under most sets of axioms).

Our notation for decidability is a connective DECID which we place before the formula in question. For example, DECID  x  =  y corresponds to " x  =  y is decidable".

We could transform intuitionistic logic to classical logic by adding unconditional forms of condc 843, exmiddc 826, peircedc 904, or notnotrdc 833, any of which would correspond to the assertion that all propositions are decidable.

(Contributed by Jim Kingdon, 11-Mar-2018.)

 |-  (DECID 
 ph 
 <->  ( ph  \/  -.  ph ) )
 
Theoremexmiddc 826 Law of excluded middle, for a decidable proposition. The law of the excluded middle is also called the principle of tertium non datur. Theorem *2.11 of [WhiteheadRussell] p. 101. It says that something is either true or not true; there are no in-between values of truth. The key way in which intuitionistic logic differs from classical logic is that intuitionistic logic says that excluded middle only holds for some propositions, and classical logic says that it holds for all propositions. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ph  ->  ( ph  \/  -.  ph ) )
 
Theorempm2.1dc 827 Commuted law of the excluded middle for a decidable proposition. Based on theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by Jim Kingdon, 25-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  \/  ph ) )
 
Theoremdcbid 828 Equivalence property for decidability. Deduction form. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (DECID  ps  <-> DECID  ch )
 )
 
Theoremdcbiit 829 Equivalence property for decidability. Closed form. (Contributed by BJ, 27-Jan-2020.)
 |-  ( ( ph  <->  ps )  ->  (DECID  ph  <-> DECID  ps ) )
 
Theoremdcbii 830 Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.)
 |-  ( ph  <->  ps )   =>    |-  (DECID 
 ph 
 <-> DECID  ps )
 
Theoremdcim 831 An implication between two decidable propositions is decidable. (Contributed by Jim Kingdon, 28-Mar-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  -> DECID 
 ( ph  ->  ps )
 ) )
 
Theoremdcn 832 The negation of a decidable proposition is decidable. The converse need not hold, but does hold for negated propositions, see dcnn 838. (Contributed by Jim Kingdon, 25-Mar-2018.)
 |-  (DECID 
 ph  -> DECID  -.  ph )
 
Theoremnotnotrdc 833 Double negation elimination for a decidable proposition. The converse, notnot 619, holds for all propositions, not just decidable ones. This is Theorem *2.14 of [WhiteheadRussell] p. 102, but with a decidability condition added. (Contributed by Jim Kingdon, 11-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  -.  ph 
 ->  ph ) )
 
Theoremdcstab 834 Decidability implies stability. The converse need not hold. (Contributed by David A. Wheeler, 13-Aug-2018.)
 |-  (DECID 
 ph  -> STAB  ph )
 
Theoremstdcndc 835 A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.)
 |-  ( (STAB 
 ph  /\ DECID  -.  ph )  <-> DECID  ph )
 
TheoremstdcndcOLD 836 Obsolete version of stdcndc 835 as of 28-Oct-2023. (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( (STAB 
 ph  /\ DECID  -.  ph )  <-> DECID  ph )
 
Theoremstdcn 837 A formula is stable if and only if the decidability of its negation implies its decidability. Note that the right-hand side of this biconditional is the converse of dcn 832. (Contributed by BJ, 18-Nov-2023.)
 |-  (STAB 
 ph 
 <->  (DECID 
 -.  ph  -> DECID  ph ) )
 
Theoremdcnn 838 Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 832. The relation between dcn 832 and dcnn 838 is analogous to that between notnot 619 and notnotnot 624 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 838 means that a proposition is testable if and only if its negation is testable, and dcn 832 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.)
 |-  (DECID 
 -.  ph  <-> DECID  -.  -.  ph )
 
TheoremdcnnOLD 839 Obsolete proof of dcnnOLD 839 as of 25-Nov-2023. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (DECID 
 -.  ph  <-> DECID  -.  -.  ph )
 
Theoremnnexmid 840 Double negation of decidability of a formula. See also comment of nndc 841 to avoid a pitfall that could come from the label "nnexmid". This theorem can also be proved from bj-nnor 13615 as in bj-nndcALT 13639. (Contributed by BJ, 9-Oct-2019.)
 |- 
 -.  -.  ( ph  \/  -.  ph )
 
Theoremnndc 841 Double negation of decidability of a formula. Intuitionistic logic refutes the negation of decidability (but does not prove decidability) of any formula.

This should not trick the reader into thinking that  -.  -. EXMID is provable in intuitionistic logic. Indeed, if we could quantify over formula metavariables, then generalizing nnexmid 840 over  ph would give " |-  A. ph -.  -. DECID  ph", but EXMID is " A. phDECID 
ph", so proving 
-.  -. EXMID would amount to proving " -.  -.  A. phDECID  ph", which is not implied by the above theorem. Indeed, the converse of nnal 1637 does not hold. Since our system does not allow quantification over formula metavariables, we can reproduce this argument by representing formulas as subsets of  ~P 1o, like we do in our definition of EXMID (df-exmid 4174): then, we can prove  A. x  e. 
~P 1o -.  -. DECID  x  =  1o but we cannot prove  -.  -.  A. x  e.  ~P 1oDECID  x  =  1o because the converse of nnral 2456 does not hold.

Actually,  -.  -. EXMID is not provable in intuitionistic logic since intuitionistic logic has models satisfying  -. EXMID and noncontradiction holds (pm3.24 683). (Contributed by BJ, 9-Oct-2019.) Add explanation on non-provability of  -. 
-. EXMID. (Revised by BJ, 11-Aug-2024.)

 |- 
 -.  -. DECID  ph
 
1.2.9  Theorems of decidable propositions

Many theorems of logic hold in intuitionistic logic just as they do in classical (non-intuitionistic) logic, for all propositions. Other theorems only hold for decidable propositions, such as the law of the excluded middle (df-dc 825), double negation elimination (notnotrdc 833), or contraposition (condc 843). Our goal is to prove all well-known or important classical theorems, but with suitable decidability conditions so that the proofs follow from intuitionistic axioms. This section is focused on such proofs, given decidability conditions.

Many theorems of this section actually hold for stable propositions (see df-stab 821). Decidable propositions are stable (dcstab 834), but the converse need not hold.

 
Theoremconst 842 Contraposition when the antecedent is a negated stable proposition. See comment of condc 843. (Contributed by BJ, 18-Nov-2023.) (Proof shortened by BJ, 11-Nov-2024.)
 |-  (STAB 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
Theoremcondc 843 Contraposition of a decidable proposition.

This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky". This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning.

(Contributed by Jim Kingdon, 13-Mar-2018.) (Proof shortened by BJ, 18-Nov-2023.)

 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
TheoremcondcOLD 844 Obsolete proof of condc 843 as of 18-Nov-2023. (Contributed by Jim Kingdon, 13-Mar-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
Theorempm2.18dc 845 Proof by contradiction for a decidable proposition. Based on Theorem *2.18 of [WhiteheadRussell] p. 103 (also called Clavius law). Intuitionistically it requires a decidability assumption, but compare with pm2.01 606 which does not. (Contributed by Jim Kingdon, 24-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ph )  ->  ph )
 )
 
Theoremcon1dc 846 Contraposition for a decidable proposition. Based on theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )
 
Theoremcon4biddc 847 A contraposition deduction. (Contributed by Jim Kingdon, 18-May-2018.)
 |-  ( ph  ->  (DECID  ps  ->  (DECID 
 ch  ->  ( -.  ps  <->  -.  ch ) ) ) )   =>    |-  ( ph  ->  (DECID  ps  ->  (DECID  ch 
 ->  ( ps  <->  ch ) ) ) )
 
Theoremimpidc 848 An importation inference for a decidable consequent. (Contributed by Jim Kingdon, 30-Apr-2018.)
 |-  (DECID 
 ch  ->  ( ph  ->  ( ps  ->  ch )
 ) )   =>    |-  (DECID 
 ch  ->  ( -.  ( ph  ->  -.  ps )  ->  ch ) )
 
Theoremsimprimdc 849 Simplification given a decidable proposition. Similar to Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by Jim Kingdon, 30-Apr-2018.)
 |-  (DECID 
 ps  ->  ( -.  ( ph  ->  -.  ps )  ->  ps ) )
 
Theoremsimplimdc 850 Simplification for a decidable proposition. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ph )
 )
 
Theorempm2.61ddc 851 Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( -.  ps  ->  ch ) )   =>    |-  (DECID 
 ps  ->  ( ph  ->  ch ) )
 
Theorempm2.6dc 852 Case elimination for a decidable proposition. Based on theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 25-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ps )  ->  (
 ( ph  ->  ps )  ->  ps ) ) )
 
Theoremjadc 853 Inference forming an implication from the antecedents of two premises, where a decidable antecedent is negated. (Contributed by Jim Kingdon, 25-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  ->  ch ) )   &    |-  ( ps  ->  ch )   =>    |-  (DECID 
 ph  ->  ( ( ph  ->  ps )  ->  ch )
 )
 
Theoremjaddc 854 Deduction forming an implication from the antecedents of two premises, where a decidable antecedent is negated. (Contributed by Jim Kingdon, 26-Mar-2018.)
 |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  ->  th ) ) )   &    |-  ( ph  ->  ( ch  ->  th ) )   =>    |-  ( ph  ->  (DECID  ps  ->  ( ( ps  ->  ch )  ->  th )
 ) )
 
Theorempm2.61dc 855 Case elimination for a decidable proposition. Theorem *2.61 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  ->  ps )  ->  (
 ( -.  ph  ->  ps )  ->  ps )
 ) )
 
Theorempm2.5gdc 856 Negating an implication for a decidable antecedent. General instance of Theorem *2.5 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ( -.  ph  ->  ch )
 ) )
 
Theorempm2.5dc 857 Negating an implication for a decidable antecedent. Theorem *2.5 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ( -.  ph  ->  ps )
 ) )
 
Theorempm2.521gdc 858 A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107, under a decidability condition. (Contributed by BJ, 28-Oct-2023.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ( ch  ->  ph ) ) )
 
Theorempm2.521dc 859 Theorem *2.521 of [WhiteheadRussell] p. 107, but with an additional decidability condition. Note that by replacing in proof pm2.52 646 with conax1k 644, we obtain a proof of the more general instance where the last occurrence of  ph is replaced with any 
ch. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ( ps  ->  ph ) ) )
 
Theorempm2.521dcALT 860 Alternate proof of pm2.521dc 859. (Contributed by Jim Kingdon, 5-May-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  ->  ps )  ->  ( ps  ->  ph ) ) )
 
Theoremcon34bdc 861 Contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116, but for a decidable proposition. (Contributed by Jim Kingdon, 24-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( ph  ->  ps )  <->  ( -.  ps  ->  -.  ph ) ) )
 
Theoremnotnotbdc 862 Double negation equivalence for a decidable proposition. Like Theorem *4.13 of [WhiteheadRussell] p. 117, but with a decidability antecendent. The forward direction, notnot 619, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 13-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ph  <->  -.  -.  ph )
 )
 
Theoremcon1biimdc 863 Contraposition. (Contributed by Jim Kingdon, 4-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph 
 <->  ps )  ->  ( -.  ps  <->  ph ) ) )
 
Theoremcon1bidc 864 Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph 
 <->  ps )  <->  ( -.  ps  <->  ph ) ) ) )
 
Theoremcon2bidc 865 Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  <->  -.  ps )  <->  ( ps  <->  -.  ph ) ) ) )
 
Theoremcon1biddc 866 A contraposition deduction. (Contributed by Jim Kingdon, 4-Apr-2018.)
 |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  <->  ch ) ) )   =>    |-  ( ph  ->  (DECID  ps  ->  ( -.  ch  <->  ps ) ) )
 
Theoremcon1biidc 867 A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  <->  ps ) )   =>    |-  (DECID 
 ph  ->  ( -.  ps  <->  ph ) )
 
Theoremcon1bdc 868 Contraposition. Bidirectional version of con1dc 846. (Contributed by NM, 5-Aug-1993.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph  ->  ps )  <->  ( -.  ps  -> 
 ph ) ) ) )
 
Theoremcon2biidc 869 A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
 |-  (DECID 
 ps  ->  ( ph  <->  -.  ps ) )   =>    |-  (DECID  ps  ->  ( ps  <->  -.  ph ) )
 
Theoremcon2biddc 870 A contraposition deduction. (Contributed by Jim Kingdon, 11-Apr-2018.)
 |-  ( ph  ->  (DECID  ch  ->  ( ps  <->  -.  ch ) ) )   =>    |-  ( ph  ->  (DECID  ch  ->  ( ch  <->  -.  ps ) ) )
 
Theoremcondandc 871 Proof by contradiction. This only holds for decidable propositions, as it is part of the family of theorems which assume  -.  ps, derive a contradiction, and therefore conclude  ps. By contrast, assuming  ps, deriving a contradiction, and therefore concluding  -.  ps, as in pm2.65 649, is valid for all propositions. (Contributed by Jim Kingdon, 13-May-2018.)
 |-  ( ( ph  /\  -.  ps )  ->  ch )   &    |-  (
 ( ph  /\  -.  ps )  ->  -.  ch )   =>    |-  (DECID  ps  ->  ( ph  ->  ps )
 )
 
Theorembijadc 872 Combine antecedents into a single biconditional. This inference is reminiscent of jadc 853. (Contributed by Jim Kingdon, 4-May-2018.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( -.  ph  ->  ( -.  ps 
 ->  ch ) )   =>    |-  (DECID 
 ps  ->  ( ( ph  <->  ps )  ->  ch ) )
 
Theorempm5.18dc 873 Relationship between an equivalence and an equivalence with some negation, for decidable propositions. Based on theorem *5.18 of [WhiteheadRussell] p. 124. Given decidability, we can consider  -.  ( ph  <->  -.  ps ) to represent "negated exclusive-or". (Contributed by Jim Kingdon, 4-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  <->  ps ) 
 <->  -.  ( ph  <->  -.  ps ) ) ) )
 
Theoremdfandc 874 Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 627. (Contributed by Jim Kingdon, 30-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  /\ 
 ps )  <->  -.  ( ph  ->  -. 
 ps ) ) ) )
 
Theorempm2.13dc 875 A decidable proposition or its triple negation is true. Theorem *2.13 of [WhiteheadRussell] p. 101 with decidability condition added. (Contributed by Jim Kingdon, 13-May-2018.)
 |-  (DECID 
 ph  ->  ( ph  \/  -. 
 -.  -.  ph ) )
 
Theorempm4.63dc 876 Theorem *4.63 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph  ->  -.  ps )  <->  (
 ph  /\  ps )
 ) ) )
 
Theorempm4.67dc 877 Theorem *4.67 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( -.  ph  ->  -.  ps )  <->  ( -.  ph  /\  ps )
 ) ) )
 
Theoremimanst 878 Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.)
 |-  (STAB  ps  ->  ( ( ph  ->  ps )  <->  -.  ( ph  /\  -.  ps ) ) )
 
Theoremimandc 879 Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176, with an added decidability condition. The forward direction, imanim 678, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 25-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( ph  ->  ps )  <->  -.  ( ph  /\  -.  ps ) ) )
 
Theorempm4.14dc 880 Theorem *4.14 of [WhiteheadRussell] p. 117, given a decidability condition. (Contributed by Jim Kingdon, 24-Apr-2018.)
 |-  (DECID 
 ch  ->  ( ( (
 ph  /\  ps )  ->  ch )  <->  ( ( ph  /\ 
 -.  ch )  ->  -.  ps ) ) )
 
Theorempm2.54dc 881 Deriving disjunction from implication for a decidable proposition. Based on theorem *2.54 of [WhiteheadRussell] p. 107. The converse, pm2.53 712, holds whether the proposition is decidable or not. (Contributed by Jim Kingdon, 26-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ps )  ->  ( ph  \/  ps ) ) )
 
Theoremdfordc 882 Definition of disjunction in terms of negation and implication for a decidable proposition. Based on definition of [Margaris] p. 49. One direction, pm2.53 712, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 26-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ps )  <->  ( -.  ph  ->  ps ) ) )
 
Theorempm2.25dc 883 Elimination of disjunction based on a disjunction, for a decidable proposition. Based on theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
 |-  (DECID 
 ph  ->  ( ph  \/  ( ( ph  \/  ps )  ->  ps )
 ) )
 
Theorempm2.68dc 884 Concluding disjunction from implication for a decidable proposition. Based on theorem *2.68 of [WhiteheadRussell] p. 108. Converse of pm2.62 738 and one half of dfor2dc 885. (Contributed by Jim Kingdon, 27-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  ->  ps )  ->  ps )  ->  ( ph  \/  ps ) ) )
 
Theoremdfor2dc 885 Disjunction expressed in terms of implication only, for a decidable proposition. Based on theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 27-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ps )  <->  ( ( ph  ->  ps )  ->  ps )
 ) )
 
Theoremimimorbdc 886 Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.)
 |-  (DECID 
 ps  ->  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch )
 ) 
 <->  ( ph  ->  ( ps  \/  ch ) ) ) )
 
Theoremimordc 887 Implication in terms of disjunction for a decidable proposition. Based on theorem *4.6 of [WhiteheadRussell] p. 120. The reverse direction, imorr 711, holds for all propositions. (Contributed by Jim Kingdon, 20-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  ->  ps )  <->  ( -.  ph  \/  ps ) ) )
 
Theorempm4.62dc 888 Implication in terms of disjunction. Like Theorem *4.62 of [WhiteheadRussell] p. 120, but for a decidable antecedent. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
 
Theoremianordc 889 Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 743, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  /\  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
 
Theorempm4.64dc 890 Theorem *4.64 of [WhiteheadRussell] p. 120, given a decidability condition. The reverse direction, pm2.53 712, holds for all propositions. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ps )  <->  ( ph  \/  ps ) ) )
 
Theorempm4.66dc 891 Theorem *4.66 of [WhiteheadRussell] p. 120, given a decidability condition. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  -.  ps )  <->  (
 ph  \/  -.  ps )
 ) )
 
Theorempm4.54dc 892 Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph  /\  ps )  <->  -.  ( ph  \/  -. 
 ps ) ) ) )
 
Theorempm4.79dc 893 Equivalence between a disjunction of two implications, and a conjunction and an implication. Based on theorem *4.79 of [WhiteheadRussell] p. 121 but with additional decidability antecedents. (Contributed by Jim Kingdon, 28-Mar-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ( ps  ->  ph )  \/  ( ch  ->  ph )
 ) 
 <->  ( ( ps  /\  ch )  ->  ph ) ) ) )
 
Theorempm5.17dc 894 Two ways of stating exclusive-or which are equivalent for a decidable proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 16-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( (
 ph  \/  ps )  /\  -.  ( ph  /\  ps ) )  <->  ( ph  <->  -.  ps ) ) )
 
Theorempm2.85dc 895 Reverse distribution of disjunction over implication, given decidability. Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by Jim Kingdon, 1-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  \/  ps )  ->  ( ph  \/  ch ) )  ->  ( ph  \/  ( ps  ->  ch )
 ) ) )
 
Theoremorimdidc 896 Disjunction distributes over implication. The forward direction, pm2.76 798, is valid intuitionistically. The reverse direction holds if  ph is decidable, as can be seen at pm2.85dc 895. (Contributed by Jim Kingdon, 1-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ( ps  ->  ch )
 ) 
 <->  ( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) ) )
 
Theorempm2.26dc 897 Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  \/  ( ( ph  ->  ps )  ->  ps )
 ) )
 
Theorempm4.81dc 898 Theorem *4.81 of [WhiteheadRussell] p. 122, for decidable propositions. This one needs a decidability condition, but compare with pm4.8 697 which holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ph )  <->  ph ) )
 
Theorempm5.11dc 899 A decidable proposition or its negation implies a second proposition. Based on theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  ->  ps )  \/  ( -.  ph  ->  ps )
 ) ) )
 
Theorempm5.12dc 900 Excluded middle with antecedents for a decidable consequent. Based on theorem *5.12 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
 |-  (DECID 
 ps  ->  ( ( ph  ->  ps )  \/  ( ph  ->  -.  ps )
 ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >