ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad5ant124 GIF version

Theorem ad5ant124 1242
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad5ant.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad5ant124 (((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃)

Proof of Theorem ad5ant124
StepHypRef Expression
1 ad5ant.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
21ad4ant124 1218 . 2 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)
32adantr 276 1 (((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator