| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-3an | GIF version | ||
| Description: Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 401. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3a 980 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 5 | 1, 2 | wa 104 | . . 3 wff (𝜑 ∧ 𝜓) |
| 6 | 5, 3 | wa 104 | . 2 wff ((𝜑 ∧ 𝜓) ∧ 𝜒) |
| 7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| Colors of variables: wff set class |
| This definition is referenced by: 3anass 984 3anrot 985 3ancoma 987 3anan32 991 3ioran 995 3simpa 996 3pm3.2i 1177 pm3.2an3 1178 3jca 1179 3anbi123i 1190 3imp 1195 3anbi123d 1323 3anim123d 1330 an6 1332 19.26-3an 1497 hb3an 1564 nf3an 1580 nf3and 1583 eeeanv 1952 sb3an 1977 mopick2 2128 r19.26-3 2627 3reeanv 2668 ceqsex3v 2806 ceqsex4v 2807 ceqsex8v 2809 sbc3an 3051 elin3 3355 rexdifpr 3651 raltpg 3676 tpss 3789 dfopg 3807 opeq1 3809 opeq2 3810 opm 4268 otth2 4275 poirr 4343 po3nr 4346 wepo 4395 wetrep 4396 rabxp 4701 brinxp2 4731 brinxp 4732 sotri2 5068 sotri3 5069 f1orn 5517 dff1o6 5826 isosolem 5874 oprabid 5957 caovimo 6121 elovmpo 6126 elovmporab 6127 elovmporab1w 6128 dfxp3 6261 nnaord 6576 fiintim 7001 prmuloc 7650 ltrelxr 8104 rexuz2 9672 ltxr 9867 elixx3g 9993 elioo4g 10026 elioopnf 10059 elioomnf 10060 elicopnf 10061 elxrge0 10070 divelunit 10094 elfz2 10107 elfzuzb 10111 uzsplit 10184 fznn0 10205 elfzmlbp 10224 elfzo2 10242 fzolb2 10247 fzouzsplit 10272 ssfzo12bi 10318 fzind2 10332 dfrp2 10370 abs2dif 11288 sumeq2 11541 divalgb 12107 bitsval2 12126 divgcdz 12163 rplpwr 12219 nnwosdc 12231 cncongr1 12296 pythagtriplem2 12460 pythagtrip 12477 xpscf 13049 issgrpd 13114 issubm2 13175 issubg3 13398 resgrpisgrp 13401 eqgval 13429 eqger 13430 eqgabl 13536 qusecsub 13537 rnglz 13577 rngpropd 13587 ringpropd 13670 ringrghm 13694 zndvds 14281 znleval 14285 znleval2 14286 isbasis3g 14366 lmfval 14512 lmbr 14533 lmbr2 14534 xmeterval 14755 xmeter 14756 cnbl0 14854 cnblcld 14855 limcrcl 14978 gausslemma2dlem1a 15383 bd3an 15560 |
| Copyright terms: Public domain | W3C validator |