![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-3an | GIF version |
Description: Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 394. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3a 927 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
5 | 1, 2 | wa 103 | . . 3 wff (𝜑 ∧ 𝜓) |
6 | 5, 3 | wa 103 | . 2 wff ((𝜑 ∧ 𝜓) ∧ 𝜒) |
7 | 4, 6 | wb 104 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
Colors of variables: wff set class |
This definition is referenced by: 3anass 931 3anrot 932 3ancoma 934 3anan32 938 3ioran 942 3simpa 943 3pm3.2i 1124 pm3.2an3 1125 3jca 1126 3anbi123i 1135 3imp 1140 3anbi123d 1255 3anim123d 1262 an6 1264 19.26-3an 1424 hb3an 1494 nf3an 1510 nf3and 1513 eeeanv 1863 sb3an 1887 mopick2 2038 r19.26-3 2513 3reeanv 2551 ceqsex3v 2675 ceqsex4v 2676 ceqsex8v 2678 sbc3an 2914 elin3 3206 raltpg 3515 tpss 3624 dfopg 3642 opeq1 3644 opeq2 3645 opm 4085 otth2 4092 poirr 4158 po3nr 4161 wepo 4210 wetrep 4211 rabxp 4504 brinxp2 4534 brinxp 4535 sotri2 4862 sotri3 4863 f1orn 5298 dff1o6 5593 isosolem 5641 oprabid 5719 caovimo 5876 elovmpt2 5883 dfxp3 6002 nnaord 6308 fiintim 6719 prmuloc 7222 ltrelxr 7644 rexuz2 9168 ltxr 9345 elixx3g 9467 elioo4g 9500 elioopnf 9533 elioomnf 9534 elicopnf 9535 elxrge0 9544 divelunit 9568 elfz2 9580 elfzuzb 9583 uzsplit 9655 fznn0 9676 elfzmlbp 9692 elfzo2 9710 fzolb2 9714 fzouzsplit 9739 ssfzo12bi 9785 fzind2 9799 abs2dif 10654 sumeq2 10902 divalgb 11352 divgcdz 11390 rplpwr 11443 cncongr1 11512 isbasis3g 11896 lmfval 12044 lmbr 12064 lmbr2 12065 xmeterval 12221 xmeter 12222 cnbl0 12311 cnblcld 12312 bd3an 12429 |
Copyright terms: Public domain | W3C validator |