![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-3an | GIF version |
Description: Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 401. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3a 980 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
5 | 1, 2 | wa 104 | . . 3 wff (𝜑 ∧ 𝜓) |
6 | 5, 3 | wa 104 | . 2 wff ((𝜑 ∧ 𝜓) ∧ 𝜒) |
7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
Colors of variables: wff set class |
This definition is referenced by: 3anass 984 3anrot 985 3ancoma 987 3anan32 991 3ioran 995 3simpa 996 3pm3.2i 1177 pm3.2an3 1178 3jca 1179 3anbi123i 1190 3imp 1195 3anbi123d 1323 3anim123d 1330 an6 1332 19.26-3an 1494 hb3an 1561 nf3an 1577 nf3and 1580 eeeanv 1949 sb3an 1974 mopick2 2125 r19.26-3 2624 3reeanv 2665 ceqsex3v 2803 ceqsex4v 2804 ceqsex8v 2806 sbc3an 3048 elin3 3351 rexdifpr 3647 raltpg 3672 tpss 3785 dfopg 3803 opeq1 3805 opeq2 3806 opm 4264 otth2 4271 poirr 4339 po3nr 4342 wepo 4391 wetrep 4392 rabxp 4697 brinxp2 4727 brinxp 4728 sotri2 5064 sotri3 5065 f1orn 5511 dff1o6 5820 isosolem 5868 oprabid 5951 caovimo 6114 elovmpo 6119 elovmporab 6120 elovmporab1w 6121 dfxp3 6249 nnaord 6564 fiintim 6987 prmuloc 7628 ltrelxr 8082 rexuz2 9649 ltxr 9844 elixx3g 9970 elioo4g 10003 elioopnf 10036 elioomnf 10037 elicopnf 10038 elxrge0 10047 divelunit 10071 elfz2 10084 elfzuzb 10088 uzsplit 10161 fznn0 10182 elfzmlbp 10201 elfzo2 10219 fzolb2 10224 fzouzsplit 10249 ssfzo12bi 10295 fzind2 10309 dfrp2 10335 abs2dif 11253 sumeq2 11505 divalgb 12069 divgcdz 12111 rplpwr 12167 nnwosdc 12179 cncongr1 12244 pythagtriplem2 12407 pythagtrip 12424 xpscf 12933 issgrpd 12998 issubm2 13048 issubg3 13265 resgrpisgrp 13268 eqgval 13296 eqger 13297 eqgabl 13403 qusecsub 13404 rnglz 13444 rngpropd 13454 ringpropd 13537 ringrghm 13561 zndvds 14148 znleval 14152 znleval2 14153 isbasis3g 14225 lmfval 14371 lmbr 14392 lmbr2 14393 xmeterval 14614 xmeter 14615 cnbl0 14713 cnblcld 14714 limcrcl 14837 gausslemma2dlem1a 15215 bd3an 15392 |
Copyright terms: Public domain | W3C validator |