| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-3an | GIF version | ||
| Description: Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 401. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3a 981 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 5 | 1, 2 | wa 104 | . . 3 wff (𝜑 ∧ 𝜓) |
| 6 | 5, 3 | wa 104 | . 2 wff ((𝜑 ∧ 𝜓) ∧ 𝜒) |
| 7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| Colors of variables: wff set class |
| This definition is referenced by: 3anass 985 3anrot 986 3ancoma 988 3anan32 992 3ioran 996 3simpa 997 3pm3.2i 1178 pm3.2an3 1179 3jca 1180 3anbi123i 1191 3imp 1196 3anbi123d 1325 3anim123d 1332 an6 1334 19.26-3an 1507 hb3an 1574 nf3an 1590 nf3and 1593 eeeanv 1962 sb3an 1987 mopick2 2138 r19.26-3 2637 3reeanv 2678 ceqsex3v 2817 ceqsex4v 2818 ceqsex8v 2820 sbc3an 3062 elin3 3366 rexdifpr 3663 raltpg 3688 tpss 3802 dfopg 3820 opeq1 3822 opeq2 3823 opm 4283 otth2 4290 poirr 4359 po3nr 4362 wepo 4411 wetrep 4412 rabxp 4717 brinxp2 4747 brinxp 4748 sotri2 5086 sotri3 5087 f1orn 5541 dff1o6 5855 isosolem 5903 oprabid 5986 caovimo 6150 elovmpo 6155 elovmporab 6156 elovmporab1w 6157 dfxp3 6290 nnaord 6605 fiintim 7040 prmuloc 7692 ltrelxr 8146 rexuz2 9715 ltxr 9910 elixx3g 10036 elioo4g 10069 elioopnf 10102 elioomnf 10103 elicopnf 10104 elxrge0 10113 divelunit 10137 elfz2 10150 elfzuzb 10154 uzsplit 10227 fznn0 10248 elfzmlbp 10267 elfzo2 10285 fzolb2 10290 fzouzsplit 10316 ssfzo12bi 10367 fzind2 10381 dfrp2 10419 ccatsymb 11072 swrdsbslen 11133 swrdspsleq 11134 abs2dif 11467 sumeq2 11720 divalgb 12286 bitsval2 12305 divgcdz 12342 rplpwr 12398 nnwosdc 12410 cncongr1 12475 pythagtriplem2 12639 pythagtrip 12656 xpscf 13229 issgrpd 13294 issubm2 13355 issubg3 13578 resgrpisgrp 13581 eqgval 13609 eqger 13610 eqgabl 13716 qusecsub 13717 rnglz 13757 rngpropd 13767 ringpropd 13850 ringrghm 13874 zndvds 14461 znleval 14465 znleval2 14466 isbasis3g 14568 lmfval 14714 lmbr 14735 lmbr2 14736 xmeterval 14957 xmeter 14958 cnbl0 15056 cnblcld 15057 limcrcl 15180 gausslemma2dlem1a 15585 bd3an 15880 |
| Copyright terms: Public domain | W3C validator |