| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-3an | GIF version | ||
| Description: Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 401. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3a 980 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 5 | 1, 2 | wa 104 | . . 3 wff (𝜑 ∧ 𝜓) |
| 6 | 5, 3 | wa 104 | . 2 wff ((𝜑 ∧ 𝜓) ∧ 𝜒) |
| 7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| Colors of variables: wff set class |
| This definition is referenced by: 3anass 984 3anrot 985 3ancoma 987 3anan32 991 3ioran 995 3simpa 996 3pm3.2i 1177 pm3.2an3 1178 3jca 1179 3anbi123i 1190 3imp 1195 3anbi123d 1323 3anim123d 1330 an6 1332 19.26-3an 1497 hb3an 1564 nf3an 1580 nf3and 1583 eeeanv 1952 sb3an 1977 mopick2 2128 r19.26-3 2627 3reeanv 2668 ceqsex3v 2806 ceqsex4v 2807 ceqsex8v 2809 sbc3an 3051 elin3 3355 rexdifpr 3651 raltpg 3676 tpss 3789 dfopg 3807 opeq1 3809 opeq2 3810 opm 4268 otth2 4275 poirr 4343 po3nr 4346 wepo 4395 wetrep 4396 rabxp 4701 brinxp2 4731 brinxp 4732 sotri2 5068 sotri3 5069 f1orn 5517 dff1o6 5826 isosolem 5874 oprabid 5957 caovimo 6121 elovmpo 6126 elovmporab 6127 elovmporab1w 6128 dfxp3 6261 nnaord 6576 fiintim 7001 prmuloc 7652 ltrelxr 8106 rexuz2 9674 ltxr 9869 elixx3g 9995 elioo4g 10028 elioopnf 10061 elioomnf 10062 elicopnf 10063 elxrge0 10072 divelunit 10096 elfz2 10109 elfzuzb 10113 uzsplit 10186 fznn0 10207 elfzmlbp 10226 elfzo2 10244 fzolb2 10249 fzouzsplit 10274 ssfzo12bi 10320 fzind2 10334 dfrp2 10372 abs2dif 11290 sumeq2 11543 divalgb 12109 bitsval2 12128 divgcdz 12165 rplpwr 12221 nnwosdc 12233 cncongr1 12298 pythagtriplem2 12462 pythagtrip 12479 xpscf 13051 issgrpd 13116 issubm2 13177 issubg3 13400 resgrpisgrp 13403 eqgval 13431 eqger 13432 eqgabl 13538 qusecsub 13539 rnglz 13579 rngpropd 13589 ringpropd 13672 ringrghm 13696 zndvds 14283 znleval 14287 znleval2 14288 isbasis3g 14390 lmfval 14536 lmbr 14557 lmbr2 14558 xmeterval 14779 xmeter 14780 cnbl0 14878 cnblcld 14879 limcrcl 15002 gausslemma2dlem1a 15407 bd3an 15584 |
| Copyright terms: Public domain | W3C validator |