Theorem List for Intuitionistic Logic Explorer - 1201-1300 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | 3jca 1201 |
Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| |
| Theorem | 3jcad 1202 |
Deduction conjoining the consequents of three implications.
(Contributed by NM, 25-Sep-2005.)
|
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| |
| Theorem | mpbir3an 1203 |
Detach a conjunction of truths in a biconditional. (Contributed by NM,
16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
|
| ⊢ 𝜓
& ⊢ 𝜒
& ⊢ 𝜃
& ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) ⇒ ⊢ 𝜑 |
| |
| Theorem | mpbir3and 1204 |
Detach a conjunction of truths in a biconditional. (Contributed by
Mario Carneiro, 11-May-2014.)
|
| ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) ⇒ ⊢ (𝜑 → 𝜓) |
| |
| Theorem | syl3anbrc 1205 |
Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜏 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) |
| |
| Theorem | syl21anbrc 1206 |
Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) |
| |
| Theorem | 3imp3i2an 1207 |
An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
(Proof shortened by Wolf Lammen, 13-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)
& ⊢ ((𝜑 ∧ 𝜒) → 𝜏)
& ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| |
| Theorem | 3anim123i 1208 |
Join antecedents and consequents with conjunction. (Contributed by NM,
8-Apr-1994.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜒 → 𝜃)
& ⊢ (𝜏 → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| |
| Theorem | 3anim1i 1209 |
Add two conjuncts to antecedent and consequent. (Contributed by Jeff
Hankins, 16-Aug-2009.)
|
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| |
| Theorem | 3anim2i 1210 |
Add two conjuncts to antecedent and consequent. (Contributed by AV,
21-Nov-2019.)
|
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜓 ∧ 𝜃)) |
| |
| Theorem | 3anim3i 1211 |
Add two conjuncts to antecedent and consequent. (Contributed by Jeff
Hankins, 19-Aug-2009.)
|
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| |
| Theorem | 3anbi123i 1212 |
Join 3 biconditionals with conjunction. (Contributed by NM,
21-Apr-1994.)
|
| ⊢ (𝜑 ↔ 𝜓)
& ⊢ (𝜒 ↔ 𝜃)
& ⊢ (𝜏 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| |
| Theorem | 3orbi123i 1213 |
Join 3 biconditionals with disjunction. (Contributed by NM,
17-May-1994.)
|
| ⊢ (𝜑 ↔ 𝜓)
& ⊢ (𝜒 ↔ 𝜃)
& ⊢ (𝜏 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| |
| Theorem | 3anbi1i 1214 |
Inference adding two conjuncts to each side of a biconditional.
(Contributed by NM, 8-Sep-2006.)
|
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| |
| Theorem | 3anbi2i 1215 |
Inference adding two conjuncts to each side of a biconditional.
(Contributed by NM, 8-Sep-2006.)
|
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) |
| |
| Theorem | 3anbi3i 1216 |
Inference adding two conjuncts to each side of a biconditional.
(Contributed by NM, 8-Sep-2006.)
|
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| |
| Theorem | 3imp 1217 |
Importation inference. (Contributed by NM, 8-Apr-1994.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3impa 1218 |
Importation from double to triple conjunction. (Contributed by NM,
20-Aug-1995.)
|
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | ex3 1219 |
Apply ex 115 to a hypothesis with a 3-right-nested
conjunction antecedent,
with the antecedent of the assertion being a triple conjunction rather
than a 2-right-nested conjunction. (Contributed by Alan Sare,
22-Apr-2018.)
|
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| |
| Theorem | 3imp31 1220 |
The importation inference 3imp 1217 with commutation of the first and third
conjuncts of the assertion relative to the hypothesis. (Contributed by
Alan Sare, 11-Sep-2016.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| |
| Theorem | 3imp231 1221 |
Importation inference. (Contributed by Alan Sare, 17-Oct-2017.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| |
| Theorem | 3imp21 1222 |
The importation inference 3imp 1217 with commutation of the first and
second conjuncts of the assertion relative to the hypothesis.
(Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1231
by Wolf Lammen, 23-Jun-2022.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3impb 1223 |
Importation from double to triple conjunction. (Contributed by NM,
20-Aug-1995.)
|
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3impia 1224 |
Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
|
| ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3impib 1225 |
Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
|
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3exp 1226 |
Exportation inference. (Contributed by NM, 30-May-1994.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| |
| Theorem | 3expa 1227 |
Exportation from triple to double conjunction. (Contributed by NM,
20-Aug-1995.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3expb 1228 |
Exportation from triple to double conjunction. (Contributed by NM,
20-Aug-1995.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| |
| Theorem | 3expia 1229 |
Exportation from triple conjunction. (Contributed by NM,
19-May-2007.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| |
| Theorem | 3expib 1230 |
Exportation from triple conjunction. (Contributed by NM,
19-May-2007.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| |
| Theorem | 3com12 1231 |
Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM,
28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3com13 1232 |
Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM,
28-Jan-1996.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| |
| Theorem | 3com23 1233 |
Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM,
28-Jan-1996.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| |
| Theorem | 3coml 1234 |
Commutation in antecedent. Rotate left. (Contributed by NM,
28-Jan-1996.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| |
| Theorem | 3comr 1235 |
Commutation in antecedent. Rotate right. (Contributed by NM,
28-Jan-1996.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| |
| Theorem | 3adant3r1 1236 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
16-Feb-2008.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| |
| Theorem | 3adant3r2 1237 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
17-Feb-2008.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| |
| Theorem | 3adant3r3 1238 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
18-Feb-2008.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| |
| Theorem | ad4ant123 1239 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃) |
| |
| Theorem | ad4ant124 1240 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| |
| Theorem | ad4ant134 1241 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | ad4ant234 1242 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3an1rs 1243 |
Swap conjuncts. (Contributed by NM, 16-Dec-2007.)
|
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) |
| |
| Theorem | 3imp1 1244 |
Importation to left triple conjunction. (Contributed by NM,
24-Feb-2005.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| |
| Theorem | 3impd 1245 |
Importation deduction for triple conjunction. (Contributed by NM,
26-Oct-2006.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| |
| Theorem | 3imp2 1246 |
Importation to right triple conjunction. (Contributed by NM,
26-Oct-2006.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| |
| Theorem | 3exp1 1247 |
Exportation from left triple conjunction. (Contributed by NM,
24-Feb-2005.)
|
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| |
| Theorem | 3expd 1248 |
Exportation deduction for triple conjunction. (Contributed by NM,
26-Oct-2006.)
|
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| |
| Theorem | 3exp2 1249 |
Exportation from right triple conjunction. (Contributed by NM,
26-Oct-2006.)
|
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| |
| Theorem | exp5o 1250 |
A triple exportation inference. (Contributed by Jeff Hankins,
8-Jul-2009.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| |
| Theorem | exp516 1251 |
A triple exportation inference. (Contributed by Jeff Hankins,
8-Jul-2009.)
|
| ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| |
| Theorem | exp520 1252 |
A triple exportation inference. (Contributed by Jeff Hankins,
8-Jul-2009.)
|
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| |
| Theorem | 3anassrs 1253 |
Associative law for conjunction applied to antecedent (eliminates
syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| |
| Theorem | 3adant1l 1254 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
8-Jan-2006.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3adant1r 1255 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
8-Jan-2006.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3adant2l 1256 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
8-Jan-2006.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3adant2r 1257 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
8-Jan-2006.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3adant3l 1258 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
8-Jan-2006.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| |
| Theorem | 3adant3r 1259 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
8-Jan-2006.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| |
| Theorem | ad5ant245 1260 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | ad5ant234 1261 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) |
| |
| Theorem | ad5ant235 1262 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) |
| |
| Theorem | ad5ant123 1263 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜃) |
| |
| Theorem | ad5ant124 1264 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃) |
| |
| Theorem | ad5ant125 1265 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) |
| |
| Theorem | ad5ant134 1266 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) |
| |
| Theorem | ad5ant135 1267 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) |
| |
| Theorem | ad5ant145 1268 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | syl12anc 1269 |
Syllogism combined with contraction. (Contributed by Jeff Hankins,
1-Aug-2009.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) |
| |
| Theorem | syl21anc 1270 |
Syllogism combined with contraction. (Contributed by Jeff Hankins,
1-Aug-2009.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) |
| |
| Theorem | syl3anc 1271 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) |
| |
| Theorem | syl22anc 1272 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) |
| |
| Theorem | syl13anc 1273 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) |
| |
| Theorem | syl31anc 1274 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) |
| |
| Theorem | syl112anc 1275 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) |
| |
| Theorem | syl121anc 1276 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) |
| |
| Theorem | syl211anc 1277 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) |
| |
| Theorem | syl23anc 1278 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl32anc 1279 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl122anc 1280 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl212anc 1281 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl221anc 1282 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl113anc 1283 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl131anc 1284 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl311anc 1285 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) |
| |
| Theorem | syl33anc 1286 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl222anc 1287 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl123anc 1288 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl132anc 1289 |
Syllogism combined with contraction. (Contributed by NM,
11-Jul-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl213anc 1290 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl231anc 1291 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl312anc 1292 |
Syllogism combined with contraction. (Contributed by NM,
11-Jul-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl321anc 1293 |
Syllogism combined with contraction. (Contributed by NM,
11-Jul-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) |
| |
| Theorem | syl133anc 1294 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (𝜑 → 𝜎)
& ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) |
| |
| Theorem | syl313anc 1295 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (𝜑 → 𝜎)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) |
| |
| Theorem | syl331anc 1296 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (𝜑 → 𝜎)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) |
| |
| Theorem | syl223anc 1297 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (𝜑 → 𝜎)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) |
| |
| Theorem | syl232anc 1298 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (𝜑 → 𝜎)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) |
| |
| Theorem | syl322anc 1299 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (𝜑 → 𝜎)
& ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) |
| |
| Theorem | syl233anc 1300 |
Syllogism combined with contraction. (Contributed by NM,
11-Mar-2012.)
|
| ⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → 𝜂)
& ⊢ (𝜑 → 𝜁)
& ⊢ (𝜑 → 𝜎)
& ⊢ (𝜑 → 𝜌)
& ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) |