Theorem List for Intuitionistic Logic Explorer - 1201-1300   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | 3impb 1201 | 
Importation from double to triple conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3impia 1202 | 
Importation to triple conjunction.  (Contributed by NM, 13-Jun-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃))    ⇒   ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3impib 1203 | 
Importation to triple conjunction.  (Contributed by NM, 13-Jun-2006.)
 | 
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃))    ⇒   ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3exp 1204 | 
Exportation inference.  (Contributed by NM, 30-May-1994.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
|   | 
| Theorem | 3expa 1205 | 
Exportation from triple to double conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3expb 1206 | 
Exportation from triple to double conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | 
|   | 
| Theorem | 3expia 1207 | 
Exportation from triple conjunction.  (Contributed by NM,
       19-May-2007.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | 
|   | 
| Theorem | 3expib 1208 | 
Exportation from triple conjunction.  (Contributed by NM,
       19-May-2007.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | 
|   | 
| Theorem | 3com12 1209 | 
Commutation in antecedent.  Swap 1st and 3rd.  (Contributed by NM,
       28-Jan-1996.)  (Proof shortened by Andrew Salmon, 13-May-2011.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3com13 1210 | 
Commutation in antecedent.  Swap 1st and 3rd.  (Contributed by NM,
       28-Jan-1996.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) | 
|   | 
| Theorem | 3com23 1211 | 
Commutation in antecedent.  Swap 2nd and 3rd.  (Contributed by NM,
       28-Jan-1996.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) | 
|   | 
| Theorem | 3coml 1212 | 
Commutation in antecedent.  Rotate left.  (Contributed by NM,
       28-Jan-1996.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) | 
|   | 
| Theorem | 3comr 1213 | 
Commutation in antecedent.  Rotate right.  (Contributed by NM,
       28-Jan-1996.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) | 
|   | 
| Theorem | 3adant3r1 1214 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       16-Feb-2008.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) | 
|   | 
| Theorem | 3adant3r2 1215 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       17-Feb-2008.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) | 
|   | 
| Theorem | 3adant3r3 1216 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       18-Feb-2008.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) | 
|   | 
| Theorem | ad4ant123 1217 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃) | 
|   | 
| Theorem | ad4ant124 1218 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | ad4ant134 1219 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | ad4ant234 1220 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3an1rs 1221 | 
Swap conjuncts.  (Contributed by NM, 16-Dec-2007.)
 | 
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)    ⇒   ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) | 
|   | 
| Theorem | 3imp1 1222 | 
Importation to left triple conjunction.  (Contributed by NM,
       24-Feb-2005.)
 | 
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏))))    ⇒   ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | 3impd 1223 | 
Importation deduction for triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏))))    ⇒   ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | 
|   | 
| Theorem | 3imp2 1224 | 
Importation to right triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏))))    ⇒   ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | 
|   | 
| Theorem | 3exp1 1225 | 
Exportation from left triple conjunction.  (Contributed by NM,
       24-Feb-2005.)
 | 
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)    ⇒   ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
|   | 
| Theorem | 3expd 1226 | 
Exportation deduction for triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏))    ⇒   ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
|   | 
| Theorem | 3exp2 1227 | 
Exportation from right triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏)    ⇒   ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
|   | 
| Theorem | exp5o 1228 | 
A triple exportation inference.  (Contributed by Jeff Hankins,
       8-Jul-2009.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂))    ⇒   ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | 
|   | 
| Theorem | exp516 1229 | 
A triple exportation inference.  (Contributed by Jeff Hankins,
       8-Jul-2009.)
 | 
| ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂)    ⇒   ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | 
|   | 
| Theorem | exp520 1230 | 
A triple exportation inference.  (Contributed by Jeff Hankins,
       8-Jul-2009.)
 | 
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂)    ⇒   ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | 
|   | 
| Theorem | 3anassrs 1231 | 
Associative law for conjunction applied to antecedent (eliminates
       syllogism).  (Contributed by Mario Carneiro, 4-Jan-2017.)
 | 
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏)    ⇒   ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | 3adant1l 1232 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3adant1r 1233 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3adant2l 1234 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3adant2r 1235 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | 3adant3l 1236 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) | 
|   | 
| Theorem | 3adant3r 1237 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) | 
|   | 
| Theorem | ad5ant245 1238 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | ad5ant234 1239 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | 
|   | 
| Theorem | ad5ant235 1240 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | ad5ant123 1241 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜃) | 
|   | 
| Theorem | ad5ant124 1242 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃) | 
|   | 
| Theorem | ad5ant125 1243 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | ad5ant134 1244 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | 
|   | 
| Theorem | ad5ant135 1245 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | ad5ant145 1246 | 
Deduction adding conjuncts to antecedent.  (Contributed by Alan Sare,
       17-Oct-2017.)  (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)    ⇒   ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
|   | 
| Theorem | syl12anc 1247 | 
Syllogism combined with contraction.  (Contributed by Jeff Hankins,
         1-Aug-2009.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏)    ⇒   ⊢ (𝜑 → 𝜏) | 
|   | 
| Theorem | syl21anc 1248 | 
Syllogism combined with contraction.  (Contributed by Jeff Hankins,
         1-Aug-2009.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)    ⇒   ⊢ (𝜑 → 𝜏) | 
|   | 
| Theorem | syl3anc 1249 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ (𝜑 → 𝜏) | 
|   | 
| Theorem | syl22anc 1250 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂)    ⇒   ⊢ (𝜑 → 𝜂) | 
|   | 
| Theorem | syl13anc 1251 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂)    ⇒   ⊢ (𝜑 → 𝜂) | 
|   | 
| Theorem | syl31anc 1252 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂)    ⇒   ⊢ (𝜑 → 𝜂) | 
|   | 
| Theorem | syl112anc 1253 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂)    ⇒   ⊢ (𝜑 → 𝜂) | 
|   | 
| Theorem | syl121anc 1254 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂)    ⇒   ⊢ (𝜑 → 𝜂) | 
|   | 
| Theorem | syl211anc 1255 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂)    ⇒   ⊢ (𝜑 → 𝜂) | 
|   | 
| Theorem | syl23anc 1256 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl32anc 1257 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl122anc 1258 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl212anc 1259 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂)) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl221anc 1260 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl113anc 1261 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl131anc 1262 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl311anc 1263 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁)    ⇒   ⊢ (𝜑 → 𝜁) | 
|   | 
| Theorem | syl33anc 1264 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl222anc 1265 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl123anc 1266 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl132anc 1267 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Jul-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl213anc 1268 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl231anc 1269 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl312anc 1270 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Jul-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁)) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl321anc 1271 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Jul-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎)    ⇒   ⊢ (𝜑 → 𝜎) | 
|   | 
| Theorem | syl133anc 1272 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌)    ⇒   ⊢ (𝜑 → 𝜌) | 
|   | 
| Theorem | syl313anc 1273 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌)    ⇒   ⊢ (𝜑 → 𝜌) | 
|   | 
| Theorem | syl331anc 1274 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌)    ⇒   ⊢ (𝜑 → 𝜌) | 
|   | 
| Theorem | syl223anc 1275 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌)    ⇒   ⊢ (𝜑 → 𝜌) | 
|   | 
| Theorem | syl232anc 1276 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌)    ⇒   ⊢ (𝜑 → 𝜌) | 
|   | 
| Theorem | syl322anc 1277 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌)    ⇒   ⊢ (𝜑 → 𝜌) | 
|   | 
| Theorem | syl233anc 1278 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (𝜑 → 𝜌)   
 &   ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇)    ⇒   ⊢ (𝜑 → 𝜇) | 
|   | 
| Theorem | syl323anc 1279 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (𝜑 → 𝜌)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇)    ⇒   ⊢ (𝜑 → 𝜇) | 
|   | 
| Theorem | syl332anc 1280 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (𝜑 → 𝜌)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇)    ⇒   ⊢ (𝜑 → 𝜇) | 
|   | 
| Theorem | syl333anc 1281 | 
A syllogism inference combined with contraction.  (Contributed by NM,
         10-Mar-2012.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜑 → 𝜒)   
 &   ⊢ (𝜑 → 𝜃)   
 &   ⊢ (𝜑 → 𝜏)   
 &   ⊢ (𝜑 → 𝜂)   
 &   ⊢ (𝜑 → 𝜁)   
 &   ⊢ (𝜑 → 𝜎)   
 &   ⊢ (𝜑 → 𝜌)   
 &   ⊢ (𝜑 → 𝜇)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌 ∧ 𝜇)) → 𝜆)    ⇒   ⊢ (𝜑 → 𝜆) | 
|   | 
| Theorem | syl3an1 1282 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syl3an2 1283 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜑 → 𝜒)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syl3an3 1284 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜑 → 𝜃)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | 
|   | 
| Theorem | syl3an1b 1285 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜑 ↔ 𝜓)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syl3an2b 1286 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜑 ↔ 𝜒)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syl3an3b 1287 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜑 ↔ 𝜃)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | 
|   | 
| Theorem | syl3an1br 1288 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜓 ↔ 𝜑)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syl3an2br 1289 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜒 ↔ 𝜑)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syl3an3br 1290 | 
A syllogism inference.  (Contributed by NM, 22-Aug-1995.)
 | 
| ⊢ (𝜃 ↔ 𝜑)   
 &   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | 
|   | 
| Theorem | syl3an 1291 | 
A triple syllogism inference.  (Contributed by NM, 13-May-2004.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜒 → 𝜃)   
 &   ⊢ (𝜏 → 𝜂)   
 &   ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
|   | 
| Theorem | syl3anb 1292 | 
A triple syllogism inference.  (Contributed by NM, 15-Oct-2005.)
 | 
| ⊢ (𝜑 ↔ 𝜓)   
 &   ⊢ (𝜒 ↔ 𝜃)   
 &   ⊢ (𝜏 ↔ 𝜂)   
 &   ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
|   | 
| Theorem | syl3anbr 1293 | 
A triple syllogism inference.  (Contributed by NM, 29-Dec-2011.)
 | 
| ⊢ (𝜓 ↔ 𝜑)   
 &   ⊢ (𝜃 ↔ 𝜒)   
 &   ⊢ (𝜂 ↔ 𝜏)   
 &   ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
|   | 
| Theorem | syld3an3 1294 | 
A syllogism inference.  (Contributed by NM, 20-May-2007.)
 | 
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   
 &   ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | 
|   | 
| Theorem | syld3an1 1295 | 
A syllogism inference.  (Contributed by NM, 7-Jul-2008.)
 | 
| ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑)   
 &   ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syld3an2 1296 | 
A syllogism inference.  (Contributed by NM, 20-May-2007.)
 | 
| ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓)   
 &   ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏)    ⇒   ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
|   | 
| Theorem | syl3anl1 1297 | 
A syllogism inference.  (Contributed by NM, 24-Feb-2005.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂)    ⇒   ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | 
|   | 
| Theorem | syl3anl2 1298 | 
A syllogism inference.  (Contributed by NM, 24-Feb-2005.)
 | 
| ⊢ (𝜑 → 𝜒)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂)    ⇒   ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) | 
|   | 
| Theorem | syl3anl3 1299 | 
A syllogism inference.  (Contributed by NM, 24-Feb-2005.)
 | 
| ⊢ (𝜑 → 𝜃)   
 &   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂)    ⇒   ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜑) ∧ 𝜏) → 𝜂) | 
|   | 
| Theorem | syl3anl 1300 | 
A triple syllogism inference.  (Contributed by NM, 24-Dec-2006.)
 | 
| ⊢ (𝜑 → 𝜓)   
 &   ⊢ (𝜒 → 𝜃)   
 &   ⊢ (𝜏 → 𝜂)   
 &   ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜂) ∧ 𝜁) → 𝜎)    ⇒   ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ 𝜁) → 𝜎) |