Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  alsi2d GIF version

Theorem alsi2d 13958
Description: Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
Hypothesis
Ref Expression
alsi2d.1 (𝜑 → ∀!𝑥(𝜓𝜒))
Assertion
Ref Expression
alsi2d (𝜑 → ∃𝑥𝜓)

Proof of Theorem alsi2d
StepHypRef Expression
1 alsi2d.1 . . 3 (𝜑 → ∀!𝑥(𝜓𝜒))
2 df-alsi 13954 . . 3 (∀!𝑥(𝜓𝜒) ↔ (∀𝑥(𝜓𝜒) ∧ ∃𝑥𝜓))
31, 2sylib 121 . 2 (𝜑 → (∀𝑥(𝜓𝜒) ∧ ∃𝑥𝜓))
43simprd 113 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wex 1480  ∀!walsi 13952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-alsi 13954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator