HomeHome Intuitionistic Logic Explorer
Theorem List (p. 150 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14901-15000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremplymulcl 14901 The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
 
Theoremplysubcl 14902 The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓𝐺) ∈ (Poly‘ℂ))
 
11.2  Basic trigonometry
 
11.2.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 14903 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
exp ∈ (ℂ–cn→ℂ)
 
Theoremsincn 14904 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
sin ∈ (ℂ–cn→ℂ)
 
Theoremcoscn 14905 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
cos ∈ (ℂ–cn→ℂ)
 
Theoremreeff1olem 14906* Lemma for reeff1o 14908. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
Theoremreeff1oleme 14907* Lemma for reeff1o 14908. (Contributed by Jim Kingdon, 15-May-2024.)
(𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
Theoremreeff1o 14908 The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
(exp ↾ ℝ):ℝ–1-1-onto→ℝ+
 
Theoremefltlemlt 14909 Lemma for eflt 14910. The converse of efltim 11841 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (exp‘𝐴) < (exp‘𝐵))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))       (𝜑𝐴 < 𝐵)
 
Theoremeflt 14910 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
 
Theoremefle 14911 The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵)))
 
Theoremreefiso 14912 The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
(exp ↾ ℝ) Isom < , < (ℝ, ℝ+)
 
Theoremreapef 14913 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵)))
 
11.2.2  Properties of pi = 3.14159...
 
Theorempilem1 14914 Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
 
Theoremcosz12 14915 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
 
Theoremsin0pilem1 14916* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
 
Theoremsin0pilem2 14917* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
 
Theorempilem3 14918 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
(π ∈ (2(,)4) ∧ (sin‘π) = 0)
 
Theorempigt2lt4 14919 π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(2 < π ∧ π < 4)
 
Theoremsinpi 14920 The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘π) = 0
 
Theorempire 14921 π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
π ∈ ℝ
 
Theorempicn 14922 π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
π ∈ ℂ
 
Theorempipos 14923 π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
0 < π
 
Theorempirp 14924 π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
π ∈ ℝ+
 
Theoremnegpicn 14925 is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.)
-π ∈ ℂ
 
Theoremsinhalfpilem 14926 Lemma for sinhalfpi 14931 and coshalfpi 14932. (Contributed by Paul Chapman, 23-Jan-2008.)
((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
 
Theoremhalfpire 14927 π / 2 is real. (Contributed by David Moews, 28-Feb-2017.)
(π / 2) ∈ ℝ
 
Theoremneghalfpire 14928 -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ
 
Theoremneghalfpirx 14929 -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ*
 
Theorempidiv2halves 14930 Adding π / 2 to itself gives π. See 2halves 9211. (Contributed by David A. Wheeler, 8-Dec-2018.)
((π / 2) + (π / 2)) = π
 
Theoremsinhalfpi 14931 The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(π / 2)) = 1
 
Theoremcoshalfpi 14932 The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(π / 2)) = 0
 
Theoremcosneghalfpi 14933 The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.)
(cos‘-(π / 2)) = 0
 
Theoremefhalfpi 14934 The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (π / 2))) = i
 
Theoremcospi 14935 The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘π) = -1
 
Theoremefipi 14936 The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(exp‘(i · π)) = -1
 
Theoremeulerid 14937 Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
((exp‘(i · π)) + 1) = 0
 
Theoremsin2pi 14938 The sine of is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(2 · π)) = 0
 
Theoremcos2pi 14939 The cosine of is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(2 · π)) = 1
 
Theoremef2pi 14940 The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (2 · π))) = 1
 
Theoremef2kpi 14941 If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1)
 
Theoremefper 14942 The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴))
 
Theoremsinperlem 14943 Lemma for sinper 14944 and cosper 14945. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))    &   ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))       ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
 
Theoremsinper 14944 The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴))
 
Theoremcosper 14945 The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴))
 
Theoremsin2kpi 14946 If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0)
 
Theoremcos2kpi 14947 If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1)
 
Theoremsin2pim 14948 Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴))
 
Theoremcos2pim 14949 Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴))
 
Theoremsinmpi 14950 Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
 
Theoremcosmpi 14951 Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴))
 
Theoremsinppi 14952 Sine of a number plus π. (Contributed by NM, 10-Aug-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴))
 
Theoremcosppi 14953 Cosine of a number plus π. (Contributed by NM, 18-Aug-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴))
 
Theoremefimpi 14954 The exponential function at i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴)))
 
Theoremsinhalfpip 14955 The sine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
 
Theoremsinhalfpim 14956 The sine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
 
Theoremcoshalfpip 14957 The cosine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (cos‘((π / 2) + 𝐴)) = -(sin‘𝐴))
 
Theoremcoshalfpim 14958 The cosine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴))
 
Theoremptolemy 14959 Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 11887, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))
 
Theoremsincosq1lem 14960 Lemma for sincosq1sgn 14961. (Contributed by Paul Chapman, 24-Jan-2008.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))
 
Theoremsincosq1sgn 14961 The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
 
Theoremsincosq2sgn 14962 The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
 
Theoremsincosq3sgn 14963 The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
 
Theoremsincosq4sgn 14964 The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
 
Theoremsinq12gt0 14965 The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
 
Theoremsinq34lt0t 14966 The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.)
(𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0)
 
Theoremcosq14gt0 14967 The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
(𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))
 
Theoremcosq23lt0 14968 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
(𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
 
Theoremcoseq0q4123 14969 Location of the zeroes of cosine in (-(π / 2)(,)(3 · (π / 2))). (Contributed by Jim Kingdon, 14-Mar-2024.)
(𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
 
Theoremcoseq00topi 14970 Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.)
(𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
 
Theoremcoseq0negpitopi 14971 Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
(𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
 
Theoremtanrpcl 14972 Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014.)
(𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) ∈ ℝ+)
 
Theoremtangtx 14973 The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
(𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
 
Theoremsincosq1eq 14974 Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2))))
 
Theoremsincos4thpi 14975 The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.)
((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))
 
Theoremtan4thpi 14976 The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.)
(tan‘(π / 4)) = 1
 
Theoremsincos6thpi 14977 The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.)
((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
 
Theoremsincos3rdpi 14978 The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.)
((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2))
 
Theorempigt3 14979 π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.)
3 < π
 
Theorempige3 14980 π is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.)
3 ≤ π
 
Theoremabssinper 14981 The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
 
Theoremsinkpi 14982 The sine of an integer multiple of π is 0. (Contributed by NM, 11-Aug-2008.)
(𝐾 ∈ ℤ → (sin‘(𝐾 · π)) = 0)
 
Theoremcoskpi 14983 The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.)
(𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)
 
Theoremcosordlem 14984 Cosine is decreasing over the closed interval from 0 to π. (Contributed by Mario Carneiro, 10-May-2014.)
(𝜑𝐴 ∈ (0[,]π))    &   (𝜑𝐵 ∈ (0[,]π))    &   (𝜑𝐴 < 𝐵)       (𝜑 → (cos‘𝐵) < (cos‘𝐴))
 
Theoremcosq34lt1 14985 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
 
Theoremcos02pilt1 14986 Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
 
Theoremcos0pilt1 14987 Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.)
(𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))
 
Theoremcos11 14988 Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵)))
 
Theoremioocosf1o 14989 The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
(cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)
 
Theoremnegpitopissre 14990 The interval (-π(,]π) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.)
(-π(,]π) ⊆ ℝ
 
11.2.3  The natural logarithm on complex numbers
 
Syntaxclog 14991 Extend class notation with the natural logarithm function on complex numbers.
class log
 
Syntaxccxp 14992 Extend class notation with the complex power function.
class 𝑐
 
Definitiondf-relog 14993 Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.)
log = (exp ↾ ℝ)
 
Definitiondf-rpcxp 14994* Define the power function on complex numbers. Because df-relog 14993 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
 
Theoremdfrelog 14995 The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.)
(log ↾ ℝ+) = (exp ↾ ℝ)
 
Theoremrelogf1o 14996 The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.)
(log ↾ ℝ+):ℝ+1-1-onto→ℝ
 
Theoremrelogcl 14997 Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
 
Theoremreeflog 14998 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
 
Theoremrelogef 14999 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(𝐴 ∈ ℝ → (log‘(exp‘𝐴)) = 𝐴)
 
Theoremrelogeftb 15000 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → ((log‘𝐴) = 𝐵 ↔ (exp‘𝐵) = 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >