![]() |
Intuitionistic Logic Explorer Theorem List (p. 150 of 152) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bdne 14901 | Inequality of two setvars is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝑥 ≠ 𝑦 | ||
Theorem | bdnel 14902* | Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED 𝑥 ∉ 𝐴 | ||
Theorem | bdreu 14903* |
Boundedness of existential uniqueness.
Remark regarding restricted quantifiers: the formula ∀𝑥 ∈ 𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 14905, and ⊢ (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 14872, if ∀𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then ∀𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED ∃!𝑥 ∈ 𝑦 𝜑 | ||
Theorem | bdrmo 14904* | Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED ∃*𝑥 ∈ 𝑦 𝜑 | ||
Theorem | bdcvv 14905 | The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED V | ||
Theorem | bdsbc 14906 | A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 14907. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED [𝑦 / 𝑥]𝜑 | ||
Theorem | bdsbcALT 14907 | Alternate proof of bdsbc 14906. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED [𝑦 / 𝑥]𝜑 | ||
Theorem | bdccsb 14908 | A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED ⦋𝑦 / 𝑥⦌𝐴 | ||
Theorem | bdcdif 14909 | The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝐵 ⇒ ⊢ BOUNDED (𝐴 ∖ 𝐵) | ||
Theorem | bdcun 14910 | The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝐵 ⇒ ⊢ BOUNDED (𝐴 ∪ 𝐵) | ||
Theorem | bdcin 14911 | The intersection of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝐵 ⇒ ⊢ BOUNDED (𝐴 ∩ 𝐵) | ||
Theorem | bdss 14912 | The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED 𝑥 ⊆ 𝐴 | ||
Theorem | bdcnul 14913 | The empty class is bounded. See also bdcnulALT 14914. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED ∅ | ||
Theorem | bdcnulALT 14914 | Alternate proof of bdcnul 14913. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 14892, or use the corresponding characterizations of its elements followed by bdelir 14895. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ BOUNDED ∅ | ||
Theorem | bdeq0 14915 | Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) |
⊢ BOUNDED 𝑥 = ∅ | ||
Theorem | bj-bd0el 14916 | Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.) |
⊢ BOUNDED ∅ ∈ 𝑥 | ||
Theorem | bdcpw 14917 | The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED 𝒫 𝐴 | ||
Theorem | bdcsn 14918 | The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED {𝑥} | ||
Theorem | bdcpr 14919 | The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED {𝑥, 𝑦} | ||
Theorem | bdctp 14920 | The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED {𝑥, 𝑦, 𝑧} | ||
Theorem | bdsnss 14921* | Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED {𝑥} ⊆ 𝐴 | ||
Theorem | bdvsn 14922* | Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝑥 = {𝑦} | ||
Theorem | bdop 14923 | The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
⊢ BOUNDED 〈𝑥, 𝑦〉 | ||
Theorem | bdcuni 14924 | The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
⊢ BOUNDED ∪ 𝑥 | ||
Theorem | bdcint 14925 | The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED ∩ 𝑥 | ||
Theorem | bdciun 14926* | The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 | ||
Theorem | bdciin 14927* | The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED ∩ 𝑥 ∈ 𝑦 𝐴 | ||
Theorem | bdcsuc 14928 | The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED suc 𝑥 | ||
Theorem | bdeqsuc 14929* | Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
⊢ BOUNDED 𝑥 = suc 𝑦 | ||
Theorem | bj-bdsucel 14930 | Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.) |
⊢ BOUNDED suc 𝑥 ∈ 𝑦 | ||
Theorem | bdcriota 14931* | A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
⊢ BOUNDED 𝜑 & ⊢ ∃!𝑥 ∈ 𝑦 𝜑 ⇒ ⊢ BOUNDED (℩𝑥 ∈ 𝑦 𝜑) | ||
In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory. | ||
Axiom | ax-bdsep 14932* | Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4133. (Contributed by BJ, 5-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsep1 14933* | Version of ax-bdsep 14932 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsep2 14934* | Version of ax-bdsep 14932 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 14933 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsepnft 14935* | Closed form of bdsepnf 14936. Version of ax-bdsep 14932 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 14933 when sufficient. (Contributed by BJ, 19-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑥Ⅎ𝑏𝜑 → ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) | ||
Theorem | bdsepnf 14936* | Version of ax-bdsep 14932 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 14937. Use bdsep1 14933 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
⊢ Ⅎ𝑏𝜑 & ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsepnfALT 14937* | Alternate proof of bdsepnf 14936, not using bdsepnft 14935. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑏𝜑 & ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdzfauscl 14938* | Closed form of the version of zfauscl 4135 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||
Theorem | bdbm1.3ii 14939* | Bounded version of bm1.3ii 4136. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ ∃𝑥∀𝑦(𝜑 → 𝑦 ∈ 𝑥) ⇒ ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
Theorem | bj-axemptylem 14940* | Lemma for bj-axempty 14941 and bj-axempty2 14942. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4141 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | ||
Theorem | bj-axempty 14941* | Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4140. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4141 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ | ||
Theorem | bj-axempty2 14942* | Axiom of the empty set from bounded separation, alternate version to bj-axempty 14941. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4141 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Theorem | bj-nalset 14943* | nalset 4145 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | ||
Theorem | bj-vprc 14944 | vprc 4147 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ V ∈ V | ||
Theorem | bj-nvel 14945 | nvel 4148 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ V ∈ 𝐴 | ||
Theorem | bj-vnex 14946 | vnex 4146 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ ∃𝑥 𝑥 = V | ||
Theorem | bdinex1 14947 | Bounded version of inex1 4149. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐵 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ V | ||
Theorem | bdinex2 14948 | Bounded version of inex2 4150. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐵 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∩ 𝐴) ∈ V | ||
Theorem | bdinex1g 14949 | Bounded version of inex1g 4151. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | ||
Theorem | bdssex 14950 | Bounded version of ssex 4152. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | ||
Theorem | bdssexi 14951 | Bounded version of ssexi 4153. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
Theorem | bdssexg 14952 | Bounded version of ssexg 4154. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
Theorem | bdssexd 14953 | Bounded version of ssexd 4155. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ BOUNDED 𝐴 ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
Theorem | bdrabexg 14954* | Bounded version of rabexg 4158. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ BOUNDED 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | bj-inex 14955 | The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) | ||
Theorem | bj-intexr 14956 | intexr 4162 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) | ||
Theorem | bj-intnexr 14957 | intnexr 4163 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) | ||
Theorem | bj-zfpair2 14958 | Proof of zfpair2 4222 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ {𝑥, 𝑦} ∈ V | ||
Theorem | bj-prexg 14959 | Proof of prexg 4223 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | ||
Theorem | bj-snexg 14960 | snexg 4196 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
Theorem | bj-snex 14961 | snex 4197 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ V | ||
Theorem | bj-sels 14962* | If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
Theorem | bj-axun2 14963* | axun2 4447 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) |
⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
Theorem | bj-uniex2 14964* | uniex2 4448 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) |
⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
Theorem | bj-uniex 14965 | uniex 4449 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
Theorem | bj-uniexg 14966 | uniexg 4451 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
Theorem | bj-unex 14967 | unex 4453 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
Theorem | bdunexb 14968 | Bounded version of unexb 4454. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝐵 ⇒ ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | bj-unexg 14969 | unexg 4455 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | bj-sucexg 14970 | sucexg 4509 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
Theorem | bj-sucex 14971 | sucex 4510 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
Axiom | ax-bj-d0cl 14972 | Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ DECID 𝜑 | ||
Theorem | bj-d0clsepcl 14973 | Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
⊢ DECID 𝜑 | ||
Syntax | wind 14974 | Syntax for inductive classes. |
wff Ind 𝐴 | ||
Definition | df-bj-ind 14975* | Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.) |
⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
Theorem | bj-indsuc 14976 | A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.) |
⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) | ||
Theorem | bj-indeq 14977 | Equality property for Ind. (Contributed by BJ, 30-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) | ||
Theorem | bj-bdind 14978 | Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
⊢ BOUNDED Ind 𝑥 | ||
Theorem | bj-indint 14979* | The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} | ||
Theorem | bj-indind 14980* | If 𝐴 is inductive and 𝐵 is "inductive in 𝐴", then (𝐴 ∩ 𝐵) is inductive. (Contributed by BJ, 25-Oct-2020.) |
⊢ ((Ind 𝐴 ∧ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → Ind (𝐴 ∩ 𝐵)) | ||
Theorem | bj-dfom 14981 | Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | ||
Theorem | bj-omind 14982 | ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
⊢ Ind ω | ||
Theorem | bj-omssind 14983 | ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) | ||
Theorem | bj-ssom 14984* | A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) | ||
Theorem | bj-om 14985* | A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)))) | ||
Theorem | bj-2inf 14986* | Two formulations of the axiom of infinity (see ax-infvn 14989 and bj-omex 14990) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) | ||
The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4605 and peano3 4607 already show this. In this section, we prove bj-peano2 14987 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms. | ||
Theorem | bj-peano2 14987 | Constructive proof of peano2 4606. Temporary note: another possibility is to simply replace sucexg 4509 with bj-sucexg 14970 in the proof of peano2 4606. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | ||
Theorem | peano5set 14988* | Version of peano5 4609 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | ||
In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements. | ||
In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 14989) and deduce that the class ω of natural number ordinals is a set (bj-omex 14990). | ||
Axiom | ax-infvn 14989* | Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4599) from which one then proves, using full separation, that the wanted set exists (omex 4604). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.) |
⊢ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) | ||
Theorem | bj-omex 14990 | Proof of omex 4604 from ax-infvn 14989. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.) |
⊢ ω ∈ V | ||
In this section, we give constructive proofs of two versions of Peano's fifth postulate. | ||
Theorem | bdpeano5 14991* | Bounded version of peano5 4609. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
Theorem | speano5 14992* | Version of peano5 4609 when 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers. | ||
Theorem | findset 14993* | Bounded induction (principle of induction when 𝐴 is assumed to be a set) allowing a proof from basic constructive axioms. See find 4610 for a nonconstructive proof of the general case. See bdfind 14994 for a proof when 𝐴 is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | ||
Theorem | bdfind 14994* | Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4610 for a nonconstructive proof of the general case. See findset 14993 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) | ||
Theorem | bj-bdfindis 14995* | Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4611 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4611, finds2 4612, finds1 4613. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) | ||
Theorem | bj-bdfindisg 14996* | Version of bj-bdfindis 14995 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 14995 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜏 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) | ||
Theorem | bj-bdfindes 14997 | Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 14995 for explanations. From this version, it is easy to prove the bounded version of findes 4614. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) | ||
Theorem | bj-nn0suc0 14998* | Constructive proof of a variant of nn0suc 4615. For a constructive proof of nn0suc 4615, see bj-nn0suc 15012. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | ||
Theorem | bj-nntrans 14999 | A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
Theorem | bj-nntrans2 15000 | A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → Tr 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |