Theorem List for Intuitionistic Logic Explorer - 14901-15000   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | limcimo 14901* | 
Conditions which ensure there is at most one limit value of 𝐹 at
         𝐵.  (Contributed by Mario Carneiro,
25-Dec-2016.)  (Revised by
         Jim Kingdon, 8-Jul-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ)    &   ⊢ (𝜑 → 𝐴 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆))    &   ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴)   
 &   ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) | 
|   | 
| Theorem | limcresi 14902 | 
Any limit of 𝐹 is also a limit of the restriction
of 𝐹.
       (Contributed by Mario Carneiro, 28-Dec-2016.)
 | 
| ⊢ (𝐹 limℂ 𝐵) ⊆ ((𝐹 ↾ 𝐶) limℂ 𝐵) | 
|   | 
| Theorem | cnplimcim 14903 | 
If a function is continuous at 𝐵, its limit at 𝐵 equals the
       value of the function there.  (Contributed by Mario Carneiro,
       28-Dec-2016.)  (Revised by Jim Kingdon, 14-Jun-2023.)
 | 
| ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ 𝐽 = (𝐾 ↾t 𝐴)    ⇒   ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | 
|   | 
| Theorem | cnplimclemle 14904 | 
Lemma for cnplimccntop 14906.  Satisfying the epsilon condition for
           continuity.  (Contributed by Mario Carneiro and Jim Kingdon,
           17-Nov-2023.)
 | 
| ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ 𝐽 = (𝐾 ↾t 𝐴)   
 &   ⊢ (𝜑 → 𝐴 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐹:𝐴⟶ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ 𝐴)   
 &   ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))    &   ⊢ (𝜑 → 𝐸 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ+)    &   ⊢ (𝜑 → 𝑍 ∈ 𝐴)   
 &   ⊢ ((𝜑 ∧ 𝑍 # 𝐵 ∧ (abs‘(𝑍 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < (𝐸 / 2))    &   ⊢ (𝜑 → (abs‘(𝑍 − 𝐵)) < 𝐷)    ⇒   ⊢ (𝜑 → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) | 
|   | 
| Theorem | cnplimclemr 14905 | 
Lemma for cnplimccntop 14906.  The reverse direction.  (Contributed by
         Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 | 
| ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ 𝐽 = (𝐾 ↾t 𝐴)   
 &   ⊢ (𝜑 → 𝐴 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐹:𝐴⟶ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ 𝐴)   
 &   ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))    ⇒   ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | 
|   | 
| Theorem | cnplimccntop 14906 | 
A function is continuous at 𝐵 iff its limit at 𝐵 equals
the
       value of the function there.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
| ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ 𝐽 = (𝐾 ↾t 𝐴)    ⇒   ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | 
|   | 
| Theorem | cnlimcim 14907* | 
If 𝐹 is a continuous function, the limit
of the function at each
       point equals the value of the function.  (Contributed by Mario Carneiro,
       28-Dec-2016.)  (Revised by Jim Kingdon, 16-Jun-2023.)
 | 
| ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | 
|   | 
| Theorem | cnlimc 14908* | 
𝐹
is a continuous function iff the limit of the function at each
       point equals the value of the function.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
| ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | 
|   | 
| Theorem | cnlimci 14909 | 
If 𝐹 is a continuous function, then the
limit of the function at any
       point equals its value.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷))    &   ⊢ (𝜑 → 𝐵 ∈ 𝐴)    ⇒   ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) | 
|   | 
| Theorem | cnmptlimc 14910* | 
If 𝐹 is a continuous function, then the
limit of the function at any
       point equals its value.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷))    &   ⊢ (𝜑 → 𝐵 ∈ 𝐴)   
 &   ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑌)    ⇒   ⊢ (𝜑 → 𝑌 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) | 
|   | 
| Theorem | limccnpcntop 14911 | 
If the limit of 𝐹 at 𝐵 is 𝐶 and
𝐺
is continuous at
       𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐵 is
𝐺(𝐶).
       (Contributed by Mario Carneiro, 28-Dec-2016.)  (Revised by Jim Kingdon,
       18-Jun-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐷)   
 &   ⊢ (𝜑 → 𝐷 ⊆ ℂ)    &   ⊢ 𝐾 = (MetOpen‘(abs ∘
 − ))   
 &   ⊢ 𝐽 = (𝐾 ↾t 𝐷)   
 &   ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐵))    &   ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))    ⇒   ⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝐺 ∘ 𝐹) limℂ 𝐵)) | 
|   | 
| Theorem | limccnp2lem 14912* | 
Lemma for limccnp2cntop 14913.  This is most of the result, expressed in
         epsilon-delta form, with a large number of hypotheses so that lengthy
         expressions do not need to be repeated.  (Contributed by Jim Kingdon,
         9-Nov-2023.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑋 ⊆ ℂ)    &   ⊢ (𝜑 → 𝑌 ⊆ ℂ)    &   ⊢ 𝐾 = (MetOpen‘(abs ∘
 − ))   
 &   ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵))    &   ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵))    &   ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉))    &   ⊢ Ⅎ𝑥𝜑   
 &   ⊢ (𝜑 → 𝐸 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐿 ∈ ℝ+)    &   ⊢ (𝜑 → ∀𝑟 ∈ 𝑋 ∀𝑠 ∈ 𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))    &   ⊢ (𝜑 → 𝐹 ∈ ℝ+)    &   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐹) → (abs‘(𝑅 − 𝐶)) < 𝐿))    &   ⊢ (𝜑 → 𝐺 ∈ ℝ+)    &   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐺) → (abs‘(𝑆 − 𝐷)) < 𝐿))    ⇒   ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) | 
|   | 
| Theorem | limccnp2cntop 14913* | 
The image of a convergent sequence under a continuous map is convergent
       to the image of the original point.  Binary operation version.
       (Contributed by Mario Carneiro, 28-Dec-2016.)  (Revised by Jim Kingdon,
       14-Nov-2023.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑋 ⊆ ℂ)    &   ⊢ (𝜑 → 𝑌 ⊆ ℂ)    &   ⊢ 𝐾 = (MetOpen‘(abs ∘
 − ))   
 &   ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵))    &   ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵))    &   ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉))    ⇒   ⊢ (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥 ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limℂ 𝐵)) | 
|   | 
| Theorem | limccoap 14914* | 
Composition of two limits.  This theorem is only usable in the case
       where 𝑥 # 𝑋 implies R(x) #
𝐶 so it is less
general than
       might appear at first.  (Contributed by Mario Carneiro, 29-Dec-2016.)
       (Revised by Jim Kingdon, 18-Dec-2023.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋}) → 𝑅 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶})    &   ⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶}) → 𝑆 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋} ↦ 𝑅) limℂ 𝑋))    &   ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶} ↦ 𝑆) limℂ 𝐶))    &   ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇)    ⇒   ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋} ↦ 𝑇) limℂ 𝑋)) | 
|   | 
| Theorem | reldvg 14915 | 
The derivative function is a relation.  (Contributed by Mario Carneiro,
       7-Aug-2014.)  (Revised by Jim Kingdon, 25-Jun-2023.)
 | 
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm
 𝑆)) → Rel (𝑆 D 𝐹)) | 
|   | 
| Theorem | dvlemap 14916* | 
Closure for a difference quotient.  (Contributed by Mario Carneiro,
       1-Sep-2014.)  (Revised by Jim Kingdon, 27-Jun-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝐷⟶ℂ)    &   ⊢ (𝜑 → 𝐷 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ 𝐷)    ⇒   ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) | 
|   | 
| Theorem | dvfvalap 14917* | 
Value and set bounds on the derivative operator.  (Contributed by Mario
       Carneiro, 7-Aug-2014.)  (Revised by Jim Kingdon, 27-Jun-2023.)
 | 
| ⊢ 𝑇 = (𝐾 ↾t 𝑆)   
 &   ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪
 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) | 
|   | 
| Theorem | eldvap 14918* | 
The differentiable predicate.  A function 𝐹 is differentiable at
       𝐵 with derivative 𝐶 iff
𝐹
is defined in a neighborhood of
       𝐵 and the difference quotient has
limit 𝐶 at 𝐵.
       (Contributed by Mario Carneiro, 7-Aug-2014.)  (Revised by Jim Kingdon,
       27-Jun-2023.)
 | 
| ⊢ 𝑇 = (𝐾 ↾t 𝑆)   
 &   ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))    &   ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐹:𝐴⟶ℂ)    &   ⊢ (𝜑 → 𝐴 ⊆ 𝑆)    ⇒   ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) | 
|   | 
| Theorem | dvcl 14919 | 
The derivative function takes values in the complex numbers.
       (Contributed by Mario Carneiro, 7-Aug-2014.)  (Revised by Mario
       Carneiro, 9-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐹:𝐴⟶ℂ)    &   ⊢ (𝜑 → 𝐴 ⊆ 𝑆)    ⇒   ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ) | 
|   | 
| Theorem | dvbssntrcntop 14920 | 
The set of differentiable points is a subset of the interior of the
         domain of the function.  (Contributed by Mario Carneiro, 7-Aug-2014.)
         (Revised by Jim Kingdon, 27-Jun-2023.)
 | 
| ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐹:𝐴⟶ℂ)    &   ⊢ (𝜑 → 𝐴 ⊆ 𝑆)   
 &   ⊢ 𝐽 = (𝐾 ↾t 𝑆)   
 &   ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) | 
|   | 
| Theorem | dvbss 14921 | 
The set of differentiable points is a subset of the domain of the
       function.  (Contributed by Mario Carneiro, 6-Aug-2014.)  (Revised by
       Mario Carneiro, 9-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐹:𝐴⟶ℂ)    &   ⊢ (𝜑 → 𝐴 ⊆ 𝑆)    ⇒   ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) | 
|   | 
| Theorem | dvbsssg 14922 | 
The set of differentiable points is a subset of the ambient topology.
       (Contributed by Mario Carneiro, 18-Mar-2015.)  (Revised by Jim Kingdon,
       28-Jun-2023.)
 | 
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm
 𝑆)) → dom (𝑆 D 𝐹) ⊆ 𝑆) | 
|   | 
| Theorem | recnprss 14923 | 
Both ℝ and ℂ are
subsets of ℂ.  (Contributed by Mario
     Carneiro, 10-Feb-2015.)
 | 
| ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆
 ℂ) | 
|   | 
| Theorem | dvfgg 14924 | 
Explicitly write out the functionality condition on derivative for
       𝑆 =
ℝ and ℂ.  (Contributed by Mario
Carneiro, 9-Feb-2015.)
       (Revised by Jim Kingdon, 28-Jun-2023.)
 | 
| ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ
 ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | 
|   | 
| Theorem | dvfpm 14925 | 
The derivative is a function.  (Contributed by Mario Carneiro,
     8-Aug-2014.)  (Revised by Jim Kingdon, 28-Jul-2023.)
 | 
| ⊢ (𝐹 ∈ (ℂ ↑pm
 ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) | 
|   | 
| Theorem | dvfcnpm 14926 | 
The derivative is a function.  (Contributed by Mario Carneiro,
     9-Feb-2015.)  (Revised by Jim Kingdon, 28-Jul-2023.)
 | 
| ⊢ (𝐹 ∈ (ℂ ↑pm
 ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ) | 
|   | 
| Theorem | dvidlemap 14927* | 
Lemma for dvid 14931 and dvconst 14930.  (Contributed by Mario Carneiro,
       8-Aug-2014.)  (Revised by Jim Kingdon, 2-Aug-2023.)
 | 
| ⊢ (𝜑 → 𝐹:ℂ⟶ℂ)    &   ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)   
 &   ⊢ 𝐵 ∈ ℂ   
 ⇒   ⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) | 
|   | 
| Theorem | dvidrelem 14928* | 
Lemma for dvidre 14933 and dvconstre 14932.  Analogue of dvidlemap 14927 for real
       numbers rather than complex numbers.  (Contributed by Jim Kingdon,
       3-Oct-2025.)
 | 
| ⊢ (𝜑 → 𝐹:ℝ⟶ℂ)    &   ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)   
 &   ⊢ 𝐵 ∈ ℂ   
 ⇒   ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵})) | 
|   | 
| Theorem | dvidsslem 14929* | 
Lemma for dvconstss 14934.  Analogue of dvidlemap 14927 where 𝐹 is defined
       on an open subset of the real or complex numbers.  (Contributed by Jim
       Kingdon, 3-Oct-2025.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ 𝐽 = (𝐾 ↾t 𝑆)   
 &   ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐽)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)   
 &   ⊢ 𝐵 ∈ ℂ   
 ⇒   ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵})) | 
|   | 
| Theorem | dvconst 14930 | 
Derivative of a constant function.  (Contributed by Mario Carneiro,
       8-Aug-2014.)  (Revised by Jim Kingdon, 2-Aug-2023.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ
 × {𝐴})) = (ℂ
 × {0})) | 
|   | 
| Theorem | dvid 14931 | 
Derivative of the identity function.  (Contributed by Mario Carneiro,
       8-Aug-2014.)  (Revised by Jim Kingdon, 2-Aug-2023.)
 | 
| ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ
 × {1}) | 
|   | 
| Theorem | dvconstre 14932 | 
Real derivative of a constant function.  (Contributed by Jim Kingdon,
       3-Oct-2025.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℝ D (ℝ
 × {𝐴})) = (ℝ
 × {0})) | 
|   | 
| Theorem | dvidre 14933 | 
Real derivative of the identity function.  (Contributed by Jim Kingdon,
       3-Oct-2025.)
 | 
| ⊢ (ℝ D ( I ↾ ℝ)) = (ℝ
 × {1}) | 
|   | 
| Theorem | dvconstss 14934 | 
Derivative of a constant function defined on an open set.  (Contributed
       by Jim Kingdon, 6-Oct-2025.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ 𝐽 = (𝐾 ↾t 𝑆)   
 &   ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ (𝜑 → 𝑋 ∈ 𝐽)   
 &   ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) | 
|   | 
| Theorem | dvcnp2cntop 14935 | 
A function is continuous at each point for which it is differentiable.
       (Contributed by Mario Carneiro, 9-Aug-2014.)  (Revised by Mario
       Carneiro, 28-Dec-2016.)
 | 
| ⊢ 𝐽 = (𝐾 ↾t 𝐴)   
 &   ⊢ 𝐾 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | 
|   | 
| Theorem | dvcn 14936 | 
A differentiable function is continuous.  (Contributed by Mario
       Carneiro, 7-Sep-2014.)  (Revised by Mario Carneiro, 7-Sep-2015.)
 | 
| ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴–cn→ℂ)) | 
|   | 
| Theorem | dvaddxxbr 14937 | 
The sum rule for derivatives at a point.  That is, if the derivative
         of 𝐹 at 𝐶 is 𝐾 and the
derivative of 𝐺 at 𝐶 is
         𝐿, then the derivative of the
pointwise sum of those two
         functions at 𝐶 is 𝐾 + 𝐿.  (Contributed by Mario Carneiro,
         9-Aug-2014.)  (Revised by Jim Kingdon, 25-Nov-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ (𝜑 → 𝐺:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾)   
 &   ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿)   
 &   ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿)) | 
|   | 
| Theorem | dvmulxxbr 14938 | 
The product rule for derivatives at a point.  For the (simpler but
         more limited) function version, see dvmulxx 14940.  (Contributed by Mario
         Carneiro, 9-Aug-2014.)  (Revised by Jim Kingdon, 1-Dec-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ (𝜑 → 𝐺:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾)   
 &   ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿)   
 &   ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) | 
|   | 
| Theorem | dvaddxx 14939 | 
The sum rule for derivatives at a point.  For the (more general)
       relation version, see dvaddxxbr 14937.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Revised by Jim Kingdon, 25-Nov-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ (𝜑 → 𝐺:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹))    &   ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺))    ⇒   ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) | 
|   | 
| Theorem | dvmulxx 14940 | 
The product rule for derivatives at a point.  For the (more general)
       relation version, see dvmulxxbr 14938.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Revised by Jim Kingdon, 2-Dec-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ (𝜑 → 𝐺:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹))    &   ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺))    ⇒   ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) | 
|   | 
| Theorem | dviaddf 14941 | 
The sum rule for everywhere-differentiable functions.  (Contributed by
       Mario Carneiro, 9-Aug-2014.)  (Revised by Mario Carneiro,
       10-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝐺:𝑋⟶ℂ)    &   ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋)   
 &   ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋)    ⇒   ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺))) | 
|   | 
| Theorem | dvimulf 14942 | 
The product rule for everywhere-differentiable functions.  (Contributed
       by Mario Carneiro, 9-Aug-2014.)  (Revised by Mario Carneiro,
       10-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝐺:𝑋⟶ℂ)    &   ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋)   
 &   ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋)    ⇒   ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 ·
 𝐺)
 ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 ·
 𝐹))) | 
|   | 
| Theorem | dvcoapbr 14943* | 
The chain rule for derivatives at a point.  The
         𝑢
# 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶) hypothesis constrains what
         functions work for 𝐺.  (Contributed by Mario Carneiro,
         9-Aug-2014.)  (Revised by Jim Kingdon, 21-Dec-2023.)
 | 
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ (𝜑 → 𝐺:𝑌⟶𝑋)   
 &   ⊢ (𝜑 → 𝑌 ⊆ 𝑇)   
 &   ⊢ (𝜑 → ∀𝑢 ∈ 𝑌 (𝑢 # 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶)))    &   ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝑇 ⊆ ℂ)    &   ⊢ (𝜑 → (𝐺‘𝐶)(𝑆 D 𝐹)𝐾)   
 &   ⊢ (𝜑 → 𝐶(𝑇 D 𝐺)𝐿)   
 &   ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ (𝜑 → 𝐶(𝑇 D (𝐹 ∘ 𝐺))(𝐾 · 𝐿)) | 
|   | 
| Theorem | dvcjbr 14944 | 
The derivative of the conjugate of a function.  For the (simpler but
       more limited) function version, see dvcj 14945.  (Contributed by Mario
       Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro, 10-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝐹:𝑋⟶ℂ)    &   ⊢ (𝜑 → 𝑋 ⊆ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ dom (ℝ D 𝐹))    ⇒   ⊢ (𝜑 → 𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
 𝐹)‘𝐶))) | 
|   | 
| Theorem | dvcj 14945 | 
The derivative of the conjugate of a function.  For the (more general)
       relation version, see dvcjbr 14944.  (Contributed by Mario Carneiro,
       1-Sep-2014.)  (Revised by Mario Carneiro, 10-Feb-2015.)
 | 
| ⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
 (∗ ∘ 𝐹)) =
 (∗ ∘ (ℝ D 𝐹))) | 
|   | 
| Theorem | dvfre 14946 | 
The derivative of a real function is real.  (Contributed by Mario
       Carneiro, 1-Sep-2014.)
 | 
| ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | 
|   | 
| Theorem | dvexp 14947* | 
Derivative of a power function.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Revised by Mario Carneiro, 10-Feb-2015.)
 | 
| ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | 
|   | 
| Theorem | dvexp2 14948* | 
Derivative of an exponential, possibly zero power.  (Contributed by
       Stefan O'Rear, 13-Nov-2014.)  (Revised by Mario Carneiro,
       10-Feb-2015.)
 | 
| ⊢ (𝑁 ∈ ℕ0 → (ℂ
 D (𝑥 ∈ ℂ
 ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) | 
|   | 
| Theorem | dvrecap 14949* | 
Derivative of the reciprocal function.  (Contributed by Mario Carneiro,
       25-Feb-2015.)  (Revised by Mario Carneiro, 28-Dec-2016.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2)))) | 
|   | 
| Theorem | dvmptidcn 14950 | 
Function-builder for derivative: derivative of the identity.
       (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
       30-Dec-2023.)
 | 
| ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1) | 
|   | 
| Theorem | dvmptccn 14951* | 
Function-builder for derivative: derivative of a constant.  (Contributed
       by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
       30-Dec-2023.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0)) | 
|   | 
| Theorem | dvmptid 14952* | 
Function-builder for derivative: derivative of the identity.
       (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Mario
       Carneiro, 11-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ,
 ℂ})    ⇒   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) | 
|   | 
| Theorem | dvmptc 14953* | 
Function-builder for derivative: derivative of a constant.  (Contributed
       by Mario Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro,
       11-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 0)) | 
|   | 
| Theorem | dvmptclx 14954* | 
Closure lemma for dvmptmulx 14956 and other related theorems.  (Contributed
       by Mario Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro,
       11-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵))    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)    ⇒   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | 
|   | 
| Theorem | dvmptaddx 14955* | 
Function-builder for derivative, addition rule.  (Contributed by Mario
         Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro, 11-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵))    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊)   
 &   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷))    ⇒   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) | 
|   | 
| Theorem | dvmptmulx 14956* | 
Function-builder for derivative, product rule.  (Contributed by Mario
         Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro, 11-Feb-2015.)
 | 
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵))    &   ⊢ (𝜑 → 𝑋 ⊆ 𝑆)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊)   
 &   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷))    ⇒   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) | 
|   | 
| Theorem | dvmptcmulcn 14957* | 
Function-builder for derivative, product rule for constant multiplier.
         (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
         31-Dec-2023.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵))) | 
|   | 
| Theorem | dvmptnegcn 14958* | 
Function-builder for derivative, product rule for negatives.
       (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
       31-Dec-2023.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    ⇒   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵)) | 
|   | 
| Theorem | dvmptsubcn 14959* | 
Function-builder for derivative, subtraction rule.  (Contributed by
         Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
         31-Dec-2023.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ 𝑊)   
 &   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷))    ⇒   ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) | 
|   | 
| Theorem | dvmptcjx 14960* | 
Function-builder for derivative, conjugate rule.  (Contributed by Mario
       Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon, 24-May-2024.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵))    &   ⊢ (𝜑 → 𝑋 ⊆ ℝ)   
 ⇒   ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) | 
|   | 
| Theorem | dvmptfsum 14961* | 
Function-builder for derivative, finite sums rule.  (Contributed by
       Stefan O'Rear, 12-Nov-2014.)
 | 
| ⊢ 𝐽 = (𝐾 ↾t 𝑆)   
 &   ⊢ 𝐾 =
 (TopOpen‘ℂfld)    &   ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ})    &   ⊢ (𝜑 → 𝑋 ∈ 𝐽)   
 &   ⊢ (𝜑 → 𝐼 ∈ Fin)    &   ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ)    &   ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵))    ⇒   ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) | 
|   | 
| Theorem | dveflem 14962 | 
Derivative of the exponential function at 0.  The key step in the proof
       is eftlub 11855, to show that
       abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4).
       (Contributed by Mario Carneiro, 9-Aug-2014.)  (Revised by Mario
       Carneiro, 28-Dec-2016.)
 | 
| ⊢ 0(ℂ D exp)1 | 
|   | 
| Theorem | dvef 14963 | 
Derivative of the exponential function.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Proof shortened by Mario Carneiro, 10-Feb-2015.)
 | 
| ⊢ (ℂ D exp) = exp | 
|   | 
| PART 11  BASIC REAL AND COMPLEX
 FUNCTIONS
 | 
|   | 
| 11.1  Polynomials
 | 
|   | 
| 11.1.1  Elementary properties of complex
 polynomials
 | 
|   | 
| Syntax | cply 14964 | 
Extend class notation to include the set of complex polynomials.
 | 
| class Poly | 
|   | 
| Syntax | cidp 14965 | 
Extend class notation to include the identity polynomial.
 | 
| class Xp | 
|   | 
| Definition | df-ply 14966* | 
Define the set of polynomials on the complex numbers with coefficients
       in the given subset.  (Contributed by Mario Carneiro, 17-Jul-2014.)
 | 
| ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0
 ∃𝑎 ∈ ((𝑥 ∪ {0})
 ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | 
|   | 
| Definition | df-idp 14967 | 
Define the identity polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
| ⊢ Xp = ( I ↾
 ℂ) | 
|   | 
| Theorem | plyval 14968* | 
Value of the polynomial set function.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
| ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
 ℕ0)𝑓 =
 (𝑧 ∈ ℂ ↦
 Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | 
|   | 
| Theorem | plybss 14969 | 
Reverse closure of the parameter 𝑆 of the polynomial set function.
       (Contributed by Mario Carneiro, 22-Jul-2014.)
 | 
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | 
|   | 
| Theorem | elply 14970* | 
Definition of a polynomial with coefficients in 𝑆.  (Contributed by
       Mario Carneiro, 17-Jul-2014.)
 | 
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
 ∃𝑎 ∈ ((𝑆 ∪ {0})
 ↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | 
|   | 
| Theorem | elply2 14971* | 
The coefficient function can be assumed to have zeroes outside
       0...𝑛.  (Contributed by Mario Carneiro,
20-Jul-2014.)  (Revised
       by Mario Carneiro, 23-Aug-2014.)
 | 
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
 ∃𝑎 ∈ ((𝑆 ∪ {0})
 ↑𝑚 ℕ0)((𝑎 “
 (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | 
|   | 
| Theorem | plyun0 14972 | 
The set of polynomials is unaffected by the addition of zero.  (This is
       built into the definition because all higher powers of a polynomial are
       effectively zero, so we require that the coefficient field contain zero
       to simplify some of our closure theorems.)  (Contributed by Mario
       Carneiro, 17-Jul-2014.)
 | 
| ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | 
|   | 
| Theorem | plyf 14973 | 
A polynomial is a function on the complex numbers.  (Contributed by
       Mario Carneiro, 22-Jul-2014.)
 | 
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | 
|   | 
| Theorem | plyss 14974 | 
The polynomial set function preserves the subset relation.  (Contributed
       by Mario Carneiro, 17-Jul-2014.)
 | 
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) | 
|   | 
| Theorem | plyssc 14975 | 
Every polynomial ring is contained in the ring of polynomials over
       ℂ.  (Contributed by Mario Carneiro,
22-Jul-2014.)
 | 
| ⊢ (Poly‘𝑆) ⊆
 (Poly‘ℂ) | 
|   | 
| Theorem | elplyr 14976* | 
Sufficient condition for elementhood in the set of polynomials.
       (Contributed by Mario Carneiro, 17-Jul-2014.)  (Revised by Mario
       Carneiro, 23-Aug-2014.)
 | 
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | elplyd 14977* | 
Sufficient condition for elementhood in the set of polynomials.
       (Contributed by Mario Carneiro, 17-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝑆 ⊆ ℂ)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | ply1termlem 14978* | 
Lemma for ply1term 14979.  (Contributed by Mario Carneiro,
26-Jul-2014.)
 | 
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁)))    ⇒   ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) | 
|   | 
| Theorem | ply1term 14979* | 
A one-term polynomial.  (Contributed by Mario Carneiro, 17-Jul-2014.)
 | 
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁)))    ⇒   ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plypow 14980* | 
A power is a polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plyconst 14981 | 
A constant function is a polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plyid 14982 | 
The identity function is a polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp
 ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plyaddlem1 14983* | 
Derive the coefficient function for the sum of two polynomials.
       (Contributed by Mario Carneiro, 23-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝑀 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ)    &   ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ)    &   ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0})    &   ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0})    &   ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))   
 &   ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))    ⇒   ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) | 
|   | 
| Theorem | plymullem1 14984* | 
Derive the coefficient function for the product of two polynomials.
       (Contributed by Mario Carneiro, 23-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝑀 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ)    &   ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ)    &   ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0})    &   ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0})    &   ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))   
 &   ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))    ⇒   ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) | 
|   | 
| Theorem | plyaddlem 14985* | 
Lemma for plyadd 14987.  (Contributed by Mario Carneiro,
21-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝑀 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
 ℕ0))   
 &   ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
 ℕ0))   
 &   ⊢ (𝜑 → (𝐴 “
 (ℤ≥‘(𝑀 + 1))) = {0})    &   ⊢ (𝜑 → (𝐵 “
 (ℤ≥‘(𝑁 + 1))) = {0})    &   ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))    &   ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))    ⇒   ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plymullem 14986* | 
Lemma for plymul 14988.  (Contributed by Mario Carneiro,
21-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝑀 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
 ℕ0))   
 &   ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
 ℕ0))   
 &   ⊢ (𝜑 → (𝐴 “
 (ℤ≥‘(𝑀 + 1))) = {0})    &   ⊢ (𝜑 → (𝐵 “
 (ℤ≥‘(𝑁 + 1))) = {0})    &   ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))    &   ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plyadd 14987* | 
The sum of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 21-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plymul 14988* | 
The product of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 21-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plysub 14989* | 
The difference of two polynomials is a polynomial.  (Contributed by
       Mario Carneiro, 21-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)   
 &   ⊢ (𝜑 → -1 ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plyaddcl 14990 | 
The sum of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 24-Jul-2014.)
 | 
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈
 (Poly‘ℂ)) | 
|   | 
| Theorem | plymulcl 14991 | 
The product of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 24-Jul-2014.)
 | 
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈
 (Poly‘ℂ)) | 
|   | 
| Theorem | plysubcl 14992 | 
The difference of two polynomials is a polynomial.  (Contributed by
       Mario Carneiro, 24-Jul-2014.)
 | 
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 − 𝐺) ∈
 (Poly‘ℂ)) | 
|   | 
| Theorem | plycoeid3 14993* | 
Reconstruct a polynomial as an explicit sum of the coefficient function
       up to an index no smaller than the degree of the polynomial.
       (Contributed by Jim Kingdon, 17-Oct-2025.)
 | 
| ⊢ (𝜑 → 𝐷 ∈ ℕ0)    &   ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ)    &   ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝐷 + 1))) = {0})    &   ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))))   
 &   ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷))    &   ⊢ (𝜑 → 𝑋 ∈ ℂ)    ⇒   ⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) | 
|   | 
| Theorem | plycolemc 14994* | 
Lemma for plyco 14995.  The result expressed as a sum, with a
degree and
         coefficients for 𝐹 specified as hypotheses. 
(Contributed by Jim
         Kingdon, 20-Sep-2025.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   ⊢ (𝜑 → (𝐴 “
 (ℤ≥‘(𝑁 + 1))) = {0})    &   ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))))    ⇒   ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plyco 14995* | 
The composition of two polynomials is a polynomial.  (Contributed by
       Mario Carneiro, 23-Jul-2014.)  (Revised by Mario Carneiro,
       23-Aug-2014.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    &   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆))    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plycjlemc 14996* | 
Lemma for plycj 14997.  (Contributed by Mario Carneiro,
24-Jul-2014.)
       (Revised by Jim Kingdon, 22-Sep-2025.)
 | 
| ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))    &   ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    ⇒   ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) | 
|   | 
| Theorem | plycj 14997* | 
The double conjugation of a polynomial is a polynomial.  (The single
       conjugation is not because our definition of polynomial includes only
       holomorphic functions, i.e. no dependence on (∗‘𝑧)
       independently of 𝑧.)  (Contributed by Mario Carneiro,
       24-Jul-2014.)
 | 
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆))    ⇒   ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | 
|   | 
| Theorem | plycn 14998 | 
A polynomial is a continuous function.  (Contributed by Mario Carneiro,
       23-Jul-2014.)  Avoid ax-mulf 8002.  (Revised by GG, 16-Mar-2025.)
 | 
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | 
|   | 
| Theorem | plyrecj 14999 | 
A polynomial with real coefficients distributes under conjugation.
       (Contributed by Mario Carneiro, 24-Jul-2014.)
 | 
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) →
 (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) | 
|   | 
| Theorem | plyreres 15000 | 
Real-coefficient polynomials restrict to real functions.  (Contributed
       by Stefan O'Rear, 16-Nov-2014.)
 | 
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾
 ℝ):ℝ⟶ℝ) |