Theorem List for Intuitionistic Logic Explorer - 14901-15000 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | dvmptnegcn 14901* |
Function-builder for derivative, product rule for negatives.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵)) |
|
Theorem | dvmptsubcn 14902* |
Function-builder for derivative, subtraction rule. (Contributed by
Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ 𝑊)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) |
|
Theorem | dvmptcjx 14903* |
Function-builder for derivative, conjugate rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
|
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ ℝ)
⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
|
Theorem | dvmptfsum 14904* |
Function-builder for derivative, finite sums rule. (Contributed by
Stefan O'Rear, 12-Nov-2014.)
|
⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 =
(TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽)
& ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) |
|
Theorem | dveflem 14905 |
Derivative of the exponential function at 0. The key step in the proof
is eftlub 11836, to show that
abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4).
(Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario
Carneiro, 28-Dec-2016.)
|
⊢ 0(ℂ D exp)1 |
|
Theorem | dvef 14906 |
Derivative of the exponential function. (Contributed by Mario Carneiro,
9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
|
⊢ (ℂ D exp) = exp |
|
PART 11 BASIC REAL AND COMPLEX
FUNCTIONS
|
|
11.1 Polynomials
|
|
11.1.1 Elementary properties of complex
polynomials
|
|
Syntax | cply 14907 |
Extend class notation to include the set of complex polynomials.
|
class Poly |
|
Syntax | cidp 14908 |
Extend class notation to include the identity polynomial.
|
class Xp |
|
Definition | df-ply 14909* |
Define the set of polynomials on the complex numbers with coefficients
in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
|
⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
|
Definition | df-idp 14910 |
Define the identity polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
⊢ Xp = ( I ↾
ℂ) |
|
Theorem | plyval 14911* |
Value of the polynomial set function. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
|
Theorem | plybss 14912 |
Reverse closure of the parameter 𝑆 of the polynomial set function.
(Contributed by Mario Carneiro, 22-Jul-2014.)
|
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
|
Theorem | elply 14913* |
Definition of a polynomial with coefficients in 𝑆. (Contributed by
Mario Carneiro, 17-Jul-2014.)
|
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
|
Theorem | elply2 14914* |
The coefficient function can be assumed to have zeroes outside
0...𝑛. (Contributed by Mario Carneiro,
20-Jul-2014.) (Revised
by Mario Carneiro, 23-Aug-2014.)
|
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
|
Theorem | plyun0 14915 |
The set of polynomials is unaffected by the addition of zero. (This is
built into the definition because all higher powers of a polynomial are
effectively zero, so we require that the coefficient field contain zero
to simplify some of our closure theorems.) (Contributed by Mario
Carneiro, 17-Jul-2014.)
|
⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
|
Theorem | plyf 14916 |
A polynomial is a function on the complex numbers. (Contributed by
Mario Carneiro, 22-Jul-2014.)
|
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
|
Theorem | plyss 14917 |
The polynomial set function preserves the subset relation. (Contributed
by Mario Carneiro, 17-Jul-2014.)
|
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |
|
Theorem | plyssc 14918 |
Every polynomial ring is contained in the ring of polynomials over
ℂ. (Contributed by Mario Carneiro,
22-Jul-2014.)
|
⊢ (Poly‘𝑆) ⊆
(Poly‘ℂ) |
|
Theorem | elplyr 14919* |
Sufficient condition for elementhood in the set of polynomials.
(Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario
Carneiro, 23-Aug-2014.)
|
⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
|
Theorem | elplyd 14920* |
Sufficient condition for elementhood in the set of polynomials.
(Contributed by Mario Carneiro, 17-Jul-2014.)
|
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
|
Theorem | ply1termlem 14921* |
Lemma for ply1term 14922. (Contributed by Mario Carneiro,
26-Jul-2014.)
|
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
|
Theorem | ply1term 14922* |
A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
|
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
|
Theorem | plypow 14923* |
A power is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) |
|
Theorem | plyconst 14924 |
A constant function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) |
|
Theorem | plyid 14925 |
The identity function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp
∈ (Poly‘𝑆)) |
|
Theorem | plyaddlem1 14926* |
Derive the coefficient function for the sum of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
|
Theorem | plymullem1 14927* |
Derive the coefficient function for the product of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |
|
Theorem | plyaddlem 14928* |
Lemma for plyadd 14930. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
|
Theorem | plymullem 14929* |
Lemma for plymul 14931. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
|
Theorem | plyadd 14930* |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
|
Theorem | plymul 14931* |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
|
Theorem | plysub 14932* |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ (Poly‘𝑆)) |
|
Theorem | plyaddcl 14933 |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈
(Poly‘ℂ)) |
|
Theorem | plymulcl 14934 |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈
(Poly‘ℂ)) |
|
Theorem | plysubcl 14935 |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 24-Jul-2014.)
|
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 − 𝐺) ∈
(Poly‘ℂ)) |
|
Theorem | plycolemc 14936* |
Lemma for plyco 14937. The result expressed as a sum, with a
degree and
coefficients for 𝐹 specified as hypotheses.
(Contributed by Jim
Kingdon, 20-Sep-2025.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
|
Theorem | plyco 14937* |
The composition of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro,
23-Aug-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |
|
Theorem | plycjlemc 14938* |
Lemma for plycj 14939. (Contributed by Mario Carneiro,
24-Jul-2014.)
(Revised by Jim Kingdon, 22-Sep-2025.)
|
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
|
Theorem | plycj 14939* |
The double conjugation of a polynomial is a polynomial. (The single
conjugation is not because our definition of polynomial includes only
holomorphic functions, i.e. no dependence on (∗‘𝑧)
independently of 𝑧.) (Contributed by Mario Carneiro,
24-Jul-2014.)
|
⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆)
& ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
|
Theorem | plycn 14940 |
A polynomial is a continuous function. (Contributed by Mario Carneiro,
23-Jul-2014.) Avoid ax-mulf 7997. (Revised by GG, 16-Mar-2025.)
|
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) |
|
Theorem | plyrecj 14941 |
A polynomial with real coefficients distributes under conjugation.
(Contributed by Mario Carneiro, 24-Jul-2014.)
|
⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) →
(∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
|
Theorem | plyreres 14942 |
Real-coefficient polynomials restrict to real functions. (Contributed
by Stefan O'Rear, 16-Nov-2014.)
|
⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾
ℝ):ℝ⟶ℝ) |
|
Theorem | dvply1 14943* |
Derivative of a polynomial, explicit sum version. (Contributed by
Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro,
11-Feb-2015.)
|
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) |
|
11.2 Basic trigonometry
|
|
11.2.1 The exponential, sine, and cosine
functions (cont.)
|
|
Theorem | efcn 14944 |
The exponential function is continuous. (Contributed by Paul Chapman,
15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
|
⊢ exp ∈ (ℂ–cn→ℂ) |
|
Theorem | sincn 14945 |
Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
⊢ sin ∈ (ℂ–cn→ℂ) |
|
Theorem | coscn 14946 |
Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
⊢ cos ∈ (ℂ–cn→ℂ) |
|
Theorem | reeff1olem 14947* |
Lemma for reeff1o 14949. (Contributed by Paul Chapman,
18-Oct-2007.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
|
Theorem | reeff1oleme 14948* |
Lemma for reeff1o 14949. (Contributed by Jim Kingdon, 15-May-2024.)
|
⊢ (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
|
Theorem | reeff1o 14949 |
The real exponential function is one-to-one onto. (Contributed by Paul
Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
|
Theorem | efltlemlt 14950 |
Lemma for eflt 14951. The converse of efltim 11844 plus the epsilon-delta
setup. (Contributed by Jim Kingdon, 22-May-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (exp‘𝐴) < (exp‘𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
⇒ ⊢ (𝜑 → 𝐴 < 𝐵) |
|
Theorem | eflt 14951 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
21-May-2024.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
|
Theorem | efle 14952 |
The exponential function on the reals is nondecreasing. (Contributed by
Mario Carneiro, 11-Mar-2014.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
|
Theorem | reefiso 14953 |
The exponential function on the reals determines an isomorphism from
reals onto positive reals. (Contributed by Steve Rodriguez,
25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
|
⊢ (exp ↾ ℝ) Isom < , <
(ℝ, ℝ+) |
|
Theorem | reapef 14954 |
Apartness and the exponential function for reals. (Contributed by Jim
Kingdon, 11-Jul-2024.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵))) |
|
11.2.2 Properties of pi =
3.14159...
|
|
Theorem | pilem1 14955 |
Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro,
9-May-2014.)
|
⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧
(sin‘𝐴) =
0)) |
|
Theorem | cosz12 14956 |
Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and
Jim Kingdon, 7-Mar-2024.)
|
⊢ ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 |
|
Theorem | sin0pilem1 14957* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
⊢ ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)) |
|
Theorem | sin0pilem2 14958* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
⊢ ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) |
|
Theorem | pilem3 14959 |
Lemma for pi related theorems. (Contributed by Jim Kingdon,
9-Mar-2024.)
|
⊢ (π ∈ (2(,)4) ∧ (sin‘π)
= 0) |
|
Theorem | pigt2lt4 14960 |
π is between 2 and 4. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
⊢ (2 < π ∧ π <
4) |
|
Theorem | sinpi 14961 |
The sine of π is 0. (Contributed by Paul Chapman,
23-Jan-2008.)
|
⊢ (sin‘π) = 0 |
|
Theorem | pire 14962 |
π is a real number. (Contributed by Paul Chapman,
23-Jan-2008.)
|
⊢ π ∈ ℝ |
|
Theorem | picn 14963 |
π is a complex number. (Contributed by David A.
Wheeler,
6-Dec-2018.)
|
⊢ π ∈ ℂ |
|
Theorem | pipos 14964 |
π is positive. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
⊢ 0 < π |
|
Theorem | pirp 14965 |
π is a positive real. (Contributed by Glauco
Siliprandi,
11-Dec-2019.)
|
⊢ π ∈
ℝ+ |
|
Theorem | negpicn 14966 |
-π is a real number. (Contributed by David A.
Wheeler,
8-Dec-2018.)
|
⊢ -π ∈ ℂ |
|
Theorem | sinhalfpilem 14967 |
Lemma for sinhalfpi 14972 and coshalfpi 14973. (Contributed by Paul Chapman,
23-Jan-2008.)
|
⊢ ((sin‘(π / 2)) = 1 ∧
(cos‘(π / 2)) = 0) |
|
Theorem | halfpire 14968 |
π / 2 is real. (Contributed by David Moews,
28-Feb-2017.)
|
⊢ (π / 2) ∈ ℝ |
|
Theorem | neghalfpire 14969 |
-π / 2 is real. (Contributed by David A. Wheeler,
8-Dec-2018.)
|
⊢ -(π / 2) ∈ ℝ |
|
Theorem | neghalfpirx 14970 |
-π / 2 is an extended real. (Contributed by David
A. Wheeler,
8-Dec-2018.)
|
⊢ -(π / 2) ∈
ℝ* |
|
Theorem | pidiv2halves 14971 |
Adding π / 2 to itself gives π. See 2halves 9214.
(Contributed by David A. Wheeler, 8-Dec-2018.)
|
⊢ ((π / 2) + (π / 2)) =
π |
|
Theorem | sinhalfpi 14972 |
The sine of π / 2 is 1. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
⊢ (sin‘(π / 2)) = 1 |
|
Theorem | coshalfpi 14973 |
The cosine of π / 2 is 0. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
⊢ (cos‘(π / 2)) = 0 |
|
Theorem | cosneghalfpi 14974 |
The cosine of -π / 2 is zero. (Contributed by David
Moews,
28-Feb-2017.)
|
⊢ (cos‘-(π / 2)) = 0 |
|
Theorem | efhalfpi 14975 |
The exponential of iπ / 2 is i. (Contributed by Mario
Carneiro, 9-May-2014.)
|
⊢ (exp‘(i · (π / 2))) =
i |
|
Theorem | cospi 14976 |
The cosine of π is -1.
(Contributed by Paul Chapman,
23-Jan-2008.)
|
⊢ (cos‘π) = -1 |
|
Theorem | efipi 14977 |
The exponential of i · π is -1. (Contributed by Paul
Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
⊢ (exp‘(i · π)) =
-1 |
|
Theorem | eulerid 14978 |
Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised
by Mario Carneiro, 9-May-2014.)
|
⊢ ((exp‘(i · π)) + 1) =
0 |
|
Theorem | sin2pi 14979 |
The sine of 2π is 0. (Contributed by Paul Chapman,
23-Jan-2008.)
|
⊢ (sin‘(2 · π)) =
0 |
|
Theorem | cos2pi 14980 |
The cosine of 2π is 1. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
⊢ (cos‘(2 · π)) =
1 |
|
Theorem | ef2pi 14981 |
The exponential of 2πi is 1.
(Contributed by Mario
Carneiro, 9-May-2014.)
|
⊢ (exp‘(i · (2 · π))) =
1 |
|
Theorem | ef2kpi 14982 |
If 𝐾 is an integer, then the exponential
of 2𝐾πi is 1.
(Contributed by Mario Carneiro, 9-May-2014.)
|
⊢ (𝐾 ∈ ℤ → (exp‘((i
· (2 · π)) · 𝐾)) = 1) |
|
Theorem | efper 14983 |
The exponential function is periodic. (Contributed by Paul Chapman,
21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 ·
π)) · 𝐾))) =
(exp‘𝐴)) |
|
Theorem | sinperlem 14984 |
Lemma for sinper 14985 and cosper 14986. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈
ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) =
(((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) |
|
Theorem | sinper 14985 |
The sine function is periodic. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) =
(sin‘𝐴)) |
|
Theorem | cosper 14986 |
The cosine function is periodic. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) =
(cos‘𝐴)) |
|
Theorem | sin2kpi 14987 |
If 𝐾 is an integer, then the sine of
2𝐾π is 0. (Contributed
by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro,
10-May-2014.)
|
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) =
0) |
|
Theorem | cos2kpi 14988 |
If 𝐾 is an integer, then the cosine of
2𝐾π is 1. (Contributed
by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro,
10-May-2014.)
|
⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) =
1) |
|
Theorem | sin2pim 14989 |
Sine of a number subtracted from 2 · π.
(Contributed by Paul
Chapman, 15-Mar-2008.)
|
⊢ (𝐴 ∈ ℂ → (sin‘((2
· π) − 𝐴))
= -(sin‘𝐴)) |
|
Theorem | cos2pim 14990 |
Cosine of a number subtracted from 2 · π.
(Contributed by Paul
Chapman, 15-Mar-2008.)
|
⊢ (𝐴 ∈ ℂ → (cos‘((2
· π) − 𝐴))
= (cos‘𝐴)) |
|
Theorem | sinmpi 14991 |
Sine of a number less π. (Contributed by Paul
Chapman,
15-Mar-2008.)
|
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) =
-(sin‘𝐴)) |
|
Theorem | cosmpi 14992 |
Cosine of a number less π. (Contributed by Paul
Chapman,
15-Mar-2008.)
|
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) =
-(cos‘𝐴)) |
|
Theorem | sinppi 14993 |
Sine of a number plus π. (Contributed by NM,
10-Aug-2008.)
|
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴)) |
|
Theorem | cosppi 14994 |
Cosine of a number plus π. (Contributed by NM,
18-Aug-2008.)
|
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴)) |
|
Theorem | efimpi 14995 |
The exponential function at i times a real number less
π.
(Contributed by Paul Chapman, 15-Mar-2008.)
|
⊢ (𝐴 ∈ ℂ → (exp‘(i
· (𝐴 −
π))) = -(exp‘(i · 𝐴))) |
|
Theorem | sinhalfpip 14996 |
The sine of π / 2 plus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
⊢ (𝐴 ∈ ℂ → (sin‘((π /
2) + 𝐴)) =
(cos‘𝐴)) |
|
Theorem | sinhalfpim 14997 |
The sine of π / 2 minus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
⊢ (𝐴 ∈ ℂ → (sin‘((π /
2) − 𝐴)) =
(cos‘𝐴)) |
|
Theorem | coshalfpip 14998 |
The cosine of π / 2 plus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
⊢ (𝐴 ∈ ℂ → (cos‘((π /
2) + 𝐴)) =
-(sin‘𝐴)) |
|
Theorem | coshalfpim 14999 |
The cosine of π / 2 minus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
⊢ (𝐴 ∈ ℂ → (cos‘((π /
2) − 𝐴)) =
(sin‘𝐴)) |
|
Theorem | ptolemy 15000 |
Ptolemy's Theorem. This theorem is named after the Greek astronomer and
mathematician Ptolemy (Claudius Ptolemaeus). This particular version is
expressed using the sine function. It is proved by expanding all the
multiplication of sines to a product of cosines of differences using
sinmul 11890, then using algebraic simplification to show
that both sides are
equal. This formalization is based on the proof in
"Trigonometry" by
Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David
A. Wheeler, 31-May-2015.)
|
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶)))) |