ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  animorr GIF version

Theorem animorr 814
Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorr ((𝜑𝜓) → (𝜒𝜓))

Proof of Theorem animorr
StepHypRef Expression
1 simpr 109 . 2 ((𝜑𝜓) → 𝜓)
21olcd 724 1 ((𝜑𝜓) → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator