ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  animorr Unicode version

Theorem animorr 824
Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorr  |-  ( (
ph  /\  ps )  ->  ( ch  \/  ps ) )

Proof of Theorem animorr
StepHypRef Expression
1 simpr 110 . 2  |-  ( (
ph  /\  ps )  ->  ps )
21olcd 734 1  |-  ( (
ph  /\  ps )  ->  ( ch  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator