![]() |
Intuitionistic Logic Explorer Theorem List (p. 9 of 129) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | simplimdc 801 | Simplification for a decidable proposition. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by Jim Kingdon, 29-Mar-2018.) |
⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → 𝜑)) | ||
Theorem | pm2.61ddc 802 | Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) ⇒ ⊢ (DECID 𝜓 → (𝜑 → 𝜒)) | ||
Theorem | pm2.6dc 803 | Case elimination for a decidable proposition. Based on theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 25-Mar-2018.) |
⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) | ||
Theorem | jadc 804 | Inference forming an implication from the antecedents of two premises, where a decidable antecedent is negated. (Contributed by Jim Kingdon, 25-Mar-2018.) |
⊢ (DECID 𝜑 → (¬ 𝜑 → 𝜒)) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (DECID 𝜑 → ((𝜑 → 𝜓) → 𝜒)) | ||
Theorem | jaddc 805 | Deduction forming an implication from the antecedents of two premises, where a decidable antecedent is negated. (Contributed by Jim Kingdon, 26-Mar-2018.) |
⊢ (𝜑 → (DECID 𝜓 → (¬ 𝜓 → 𝜃))) & ⊢ (𝜑 → (𝜒 → 𝜃)) ⇒ ⊢ (𝜑 → (DECID 𝜓 → ((𝜓 → 𝜒) → 𝜃))) | ||
Theorem | pm2.61dc 806 | Case elimination for a decidable proposition. Based on theorem *2.61 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 29-Mar-2018.) |
⊢ (DECID 𝜑 → ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜓))) | ||
Theorem | pm2.5dc 807 | Negating an implication for a decidable antecedent. Based on theorem *2.5 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 29-Mar-2018.) |
⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → (¬ 𝜑 → 𝜓))) | ||
Theorem | pm2.521dc 808 | Theorem *2.521 of [WhiteheadRussell] p. 107, but with an additional decidability condition. (Contributed by Jim Kingdon, 5-May-2018.) |
⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → (𝜓 → 𝜑))) | ||
Theorem | con34bdc 809 | Contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116, but for a decidable proposition. (Contributed by Jim Kingdon, 24-Apr-2018.) |
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))) | ||
Theorem | notnotbdc 810 | Double negation equivalence for a decidable proposition. Like Theorem *4.13 of [WhiteheadRussell] p. 117, but with a decidability antecendent. The forward direction, notnot 599, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 13-Mar-2018.) |
⊢ (DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑)) | ||
Theorem | con1biimdc 811 | Contraposition. (Contributed by Jim Kingdon, 4-Apr-2018.) |
⊢ (DECID 𝜑 → ((¬ 𝜑 ↔ 𝜓) → (¬ 𝜓 ↔ 𝜑))) | ||
Theorem | con1bidc 812 | Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ↔ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)))) | ||
Theorem | con2bidc 813 | Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)))) | ||
Theorem | con1biddc 814 | A contraposition deduction. (Contributed by Jim Kingdon, 4-Apr-2018.) |
⊢ (𝜑 → (DECID 𝜓 → (¬ 𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (DECID 𝜓 → (¬ 𝜒 ↔ 𝜓))) | ||
Theorem | con1biidc 815 | A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.) |
⊢ (DECID 𝜑 → (¬ 𝜑 ↔ 𝜓)) ⇒ ⊢ (DECID 𝜑 → (¬ 𝜓 ↔ 𝜑)) | ||
Theorem | con1bdc 816 | Contraposition. Bidirectional version of con1dc 797. (Contributed by NM, 5-Aug-1993.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → 𝜑)))) | ||
Theorem | con2biidc 817 | A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.) |
⊢ (DECID 𝜓 → (𝜑 ↔ ¬ 𝜓)) ⇒ ⊢ (DECID 𝜓 → (𝜓 ↔ ¬ 𝜑)) | ||
Theorem | con2biddc 818 | A contraposition deduction. (Contributed by Jim Kingdon, 11-Apr-2018.) |
⊢ (𝜑 → (DECID 𝜒 → (𝜓 ↔ ¬ 𝜒))) ⇒ ⊢ (𝜑 → (DECID 𝜒 → (𝜒 ↔ ¬ 𝜓))) | ||
Theorem | condandc 819 | Proof by contradiction. This only holds for decidable propositions, as it is part of the family of theorems which assume ¬ 𝜓, derive a contradiction, and therefore conclude 𝜓. By contrast, assuming 𝜓, deriving a contradiction, and therefore concluding ¬ 𝜓, as in pm2.65 626, is valid for all propositions. (Contributed by Jim Kingdon, 13-May-2018.) |
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒) ⇒ ⊢ (DECID 𝜓 → (𝜑 → 𝜓)) | ||
Theorem | bijadc 820 | Combine antecedents into a single biconditional. This inference is reminiscent of jadc 804. (Contributed by Jim Kingdon, 4-May-2018.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) ⇒ ⊢ (DECID 𝜓 → ((𝜑 ↔ 𝜓) → 𝜒)) | ||
Theorem | pm5.18dc 821 | Relationship between an equivalence and an equivalence with some negation, for decidable propositions. Based on theorem *5.18 of [WhiteheadRussell] p. 124. Given decidability, we can consider ¬ (𝜑 ↔ ¬ 𝜓) to represent "negated exclusive-or". (Contributed by Jim Kingdon, 4-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))) | ||
Theorem | dfandc 822 | Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 606. (Contributed by Jim Kingdon, 30-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)))) | ||
Theorem | pm2.13dc 823 | A decidable proposition or its triple negation is true. Theorem *2.13 of [WhiteheadRussell] p. 101 with decidability condition added. (Contributed by Jim Kingdon, 13-May-2018.) |
⊢ (DECID 𝜑 → (𝜑 ∨ ¬ ¬ ¬ 𝜑)) | ||
Theorem | pm4.63dc 824 | Theorem *4.63 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 → ¬ 𝜓) ↔ (𝜑 ∧ 𝜓)))) | ||
Theorem | pm4.67dc 825 | Theorem *4.67 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∧ 𝜓)))) | ||
Theorem | annimim 826 | Express conjunction in terms of implication. One direction of Theorem *4.61 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as can be seen at annimdc 889. (Contributed by Jim Kingdon, 24-Dec-2017.) |
⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 → 𝜓)) | ||
Theorem | pm4.65r 827 | One direction of Theorem *4.65 of [WhiteheadRussell] p. 120. The converse holds in classical logic. (Contributed by Jim Kingdon, 28-Jul-2018.) |
⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓)) | ||
Theorem | dcim 828 | An implication between two decidable propositions is decidable. (Contributed by Jim Kingdon, 28-Mar-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 → 𝜓))) | ||
Theorem | imanim 829 | Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 830. (Contributed by Jim Kingdon, 24-Dec-2017.) |
⊢ ((𝜑 → 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | imandc 830 | Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176, with an added decidability condition. The forward direction, imanim 829, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 25-Apr-2018.) |
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) | ||
Theorem | pm4.14dc 831 | Theorem *4.14 of [WhiteheadRussell] p. 117, given a decidability condition. (Contributed by Jim Kingdon, 24-Apr-2018.) |
⊢ (DECID 𝜒 → (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))) | ||
Theorem | pm3.37 832 | Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) | ||
Theorem | pm4.15 833 | Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
⊢ (((𝜑 ∧ 𝜓) → ¬ 𝜒) ↔ ((𝜓 ∧ 𝜒) → ¬ 𝜑)) | ||
Theorem | pm2.54dc 834 | Deriving disjunction from implication for a decidable proposition. Based on theorem *2.54 of [WhiteheadRussell] p. 107. The converse, pm2.53 682, holds whether the proposition is decidable or not. (Contributed by Jim Kingdon, 26-Mar-2018.) |
⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓))) | ||
Theorem | dfordc 835 | Definition of 'or' in terms of negation and implication for a decidable proposition. Based on definition of [Margaris] p. 49. One direction, pm2.53 682, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 26-Mar-2018.) |
⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓))) | ||
Theorem | pm2.25dc 836 | Elimination of disjunction based on a disjunction, for a decidable proposition. Based on theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
⊢ (DECID 𝜑 → (𝜑 ∨ ((𝜑 ∨ 𝜓) → 𝜓))) | ||
Theorem | pm2.68dc 837 | Concluding disjunction from implication for a decidable proposition. Based on theorem *2.68 of [WhiteheadRussell] p. 108. Converse of pm2.62 708 and one half of dfor2dc 838. (Contributed by Jim Kingdon, 27-Mar-2018.) |
⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜓) → (𝜑 ∨ 𝜓))) | ||
Theorem | dfor2dc 838 | Logical 'or' expressed in terms of implication only, for a decidable proposition. Based on theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 27-Mar-2018.) |
⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 → 𝜓) → 𝜓))) | ||
Theorem | imimorbdc 839 | Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.) |
⊢ (DECID 𝜓 → (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒)))) | ||
Theorem | imordc 840 | Implication in terms of disjunction for a decidable proposition. Based on theorem *4.6 of [WhiteheadRussell] p. 120. The reverse direction, imorr 841, holds for all propositions. (Contributed by Jim Kingdon, 20-Apr-2018.) |
⊢ (DECID 𝜑 → ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓))) | ||
Theorem | imorr 841 | Implication in terms of disjunction. One direction of theorem *4.6 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as seen at imordc 840. (Contributed by Jim Kingdon, 21-Jul-2018.) |
⊢ ((¬ 𝜑 ∨ 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | pm4.62dc 842 | Implication in terms of disjunction. Like Theorem *4.62 of [WhiteheadRussell] p. 120, but for a decidable antecedent. (Contributed by Jim Kingdon, 21-Apr-2018.) |
⊢ (DECID 𝜑 → ((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) | ||
Theorem | ianordc 843 | Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 711, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.) |
⊢ (DECID 𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) | ||
Theorem | oibabs 844 | Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) |
⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) ↔ (𝜑 ↔ 𝜓)) | ||
Theorem | pm4.64dc 845 | Theorem *4.64 of [WhiteheadRussell] p. 120, given a decidability condition. The reverse direction, pm2.53 682, holds for all propositions. (Contributed by Jim Kingdon, 2-May-2018.) |
⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) ↔ (𝜑 ∨ 𝜓))) | ||
Theorem | pm4.66dc 846 | Theorem *4.66 of [WhiteheadRussell] p. 120, given a decidability condition. (Contributed by Jim Kingdon, 2-May-2018.) |
⊢ (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) | ||
Theorem | pm4.52im 847 | One direction of theorem *4.52 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.) |
⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑 ∨ 𝜓)) | ||
Theorem | pm4.53r 848 | One direction of theorem *4.53 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.) |
⊢ ((¬ 𝜑 ∨ 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | pm4.54dc 849 | Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) | ||
Theorem | pm4.56 850 | Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | ||
Theorem | oranim 851 | Disjunction in terms of conjunction (DeMorgan's law). One direction of Theorem *4.57 of [WhiteheadRussell] p. 120. The converse does not hold intuitionistically but does hold in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.) |
⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) | ||
Theorem | pm4.78i 852 | Implication distributes over disjunction. One direction of Theorem *4.78 of [WhiteheadRussell] p. 121. The converse holds in classical logic. (Contributed by Jim Kingdon, 15-Jan-2018.) |
⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∨ 𝜒))) | ||
Theorem | pm4.79dc 853 | Equivalence between a disjunction of two implications, and a conjunction and an implication. Based on theorem *4.79 of [WhiteheadRussell] p. 121 but with additional decidability antecedents. (Contributed by Jim Kingdon, 28-Mar-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)))) | ||
Theorem | pm5.17dc 854 | Two ways of stating exclusive-or which are equivalent for a decidable proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 16-Apr-2018.) |
⊢ (DECID 𝜓 → (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓))) | ||
Theorem | pm2.85dc 855 | Reverse distribution of disjunction over implication, given decidability. Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by Jim Kingdon, 1-Apr-2018.) |
⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) | ||
Theorem | orimdidc 856 | Disjunction distributes over implication. The forward direction, pm2.76 763, is valid intuitionistically. The reverse direction holds if 𝜑 is decidable, as can be seen at pm2.85dc 855. (Contributed by Jim Kingdon, 1-Apr-2018.) |
⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)))) | ||
Theorem | pm2.26dc 857 | Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.) |
⊢ (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓))) | ||
Theorem | pm4.81dc 858 | Theorem *4.81 of [WhiteheadRussell] p. 122, for decidable propositions. This one needs a decidability condition, but compare with pm4.8 664 which holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.) |
⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜑) ↔ 𝜑)) | ||
Theorem | pm5.11dc 859 | A decidable proposition or its negation implies a second proposition. Based on theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 29-Mar-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (¬ 𝜑 → 𝜓)))) | ||
Theorem | pm5.12dc 860 | Excluded middle with antecedents for a decidable consequent. Based on theorem *5.12 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.) |
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜑 → ¬ 𝜓))) | ||
Theorem | pm5.14dc 861 | A decidable proposition is implied by or implies other propositions. Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.) |
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜓 → 𝜒))) | ||
Theorem | pm5.13dc 862 | An implication holds in at least one direction, where one proposition is decidable. Based on theorem *5.13 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.) |
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜓 → 𝜑))) | ||
Theorem | pm5.55dc 863 | A disjunction is equivalent to one of its disjuncts, given a decidable disjunct. Based on theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.) |
⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∨ 𝜓) ↔ 𝜓))) | ||
Theorem | peircedc 864 | Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 788, condc 793, or notnotrdc 795 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.) |
⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) | ||
Theorem | looinvdc 865 | The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz, but where one of the propositions is decidable. Using dfor2dc 838, we can see that this expresses "disjunction commutes." Theorem *2.69 of [WhiteheadRussell] p. 108 (plus the decidability condition). (Contributed by NM, 12-Aug-2004.) |
⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → 𝜑))) | ||
Theorem | dftest 866 |
A proposition is testable iff its negative or double-negative is true.
See Chapter 2 [Moschovakis] p. 2.
Our notation for testability is DECID ¬ before the formula in question. For example, DECID ¬ 𝑥 = 𝑦 corresponds to "x = y is testable". (Contributed by David A. Wheeler, 13-Aug-2018.) |
⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | ||
Theorem | testbitestn 867 | A proposition is testable iff its negation is testable. See also dcn 790 (which could be read as "Decidability implies testability"). (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (DECID ¬ 𝜑 ↔ DECID ¬ ¬ 𝜑) | ||
Theorem | stabtestimpdc 868 | "Stable and testable" is equivalent to decidable. (Contributed by David A. Wheeler, 13-Aug-2018.) |
⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID 𝜑) | ||
Theorem | pm5.21nd 869 | Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ (𝜃 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
Theorem | pm5.35 870 | Theorem *5.35 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ↔ 𝜒))) | ||
Theorem | pm5.54dc 871 | A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.) |
⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓))) | ||
Theorem | baib 872 | Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | ||
Theorem | baibr 873 | Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜒 ↔ 𝜑)) | ||
Theorem | rbaib 874 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | ||
Theorem | rbaibr 875 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜓 ↔ 𝜑)) | ||
Theorem | baibd 876 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) | ||
Theorem | rbaibd 877 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | ||
Theorem | pm5.44 878 | Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 → 𝜒) ↔ (𝜑 → (𝜓 ∧ 𝜒)))) | ||
Theorem | pm5.6dc 879 | Conjunction in antecedent versus disjunction in consequent, for a decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with decidability condition added. The reverse implication holds for all propositions (see pm5.6r 880). (Contributed by Jim Kingdon, 2-Apr-2018.) |
⊢ (DECID 𝜓 → (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 ∨ 𝜒)))) | ||
Theorem | pm5.6r 880 | Conjunction in antecedent versus disjunction in consequent. One direction of Theorem *5.6 of [WhiteheadRussell] p. 125. If 𝜓 is decidable, the converse also holds (see pm5.6dc 879). (Contributed by Jim Kingdon, 4-Aug-2018.) |
⊢ ((𝜑 → (𝜓 ∨ 𝜒)) → ((𝜑 ∧ ¬ 𝜓) → 𝜒)) | ||
Theorem | orcanai 881 | Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) | ||
Theorem | intnan 882 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜓 ∧ 𝜑) | ||
Theorem | intnanr 883 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜑 ∧ 𝜓) | ||
Theorem | intnand 884 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) | ||
Theorem | intnanrd 885 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) | ||
Theorem | dcan 886 | A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) | ||
Theorem | dcor 887 | A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∨ 𝜓))) | ||
Theorem | dcbi 888 | An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) | ||
Theorem | annimdc 889 | Express conjunction in terms of implication. The forward direction, annimim 826, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)))) | ||
Theorem | pm4.55dc 890 | Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.) |
⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))) | ||
Theorem | orandc 891 | Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.) |
⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))) | ||
Theorem | mpbiran 892 | Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
⊢ 𝜓 & ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 ↔ 𝜒) | ||
Theorem | mpbiran2 893 | Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
⊢ 𝜒 & ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | mpbir2an 894 | Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ 𝜑 | ||
Theorem | mpbi2and 895 | Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mpbir2and 896 | Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm5.62dc 897 | Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.) |
⊢ (DECID 𝜓 → (((𝜑 ∧ 𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) | ||
Theorem | pm5.63dc 898 | Theorem *5.63 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.) |
⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ (¬ 𝜑 ∧ 𝜓)))) | ||
Theorem | bianfi 899 | A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
⊢ ¬ 𝜑 ⇒ ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) | ||
Theorem | bianfd 900 | A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |