HomeHome Intuitionistic Logic Explorer
Theorem List (p. 9 of 129)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 801-900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsimplimdc 801 Simplification for a decidable proposition. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by Jim Kingdon, 29-Mar-2018.)
(DECID 𝜑 → (¬ (𝜑𝜓) → 𝜑))
 
Theorempm2.61ddc 802 Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (¬ 𝜓𝜒))       (DECID 𝜓 → (𝜑𝜒))
 
Theorempm2.6dc 803 Case elimination for a decidable proposition. Based on theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 25-Mar-2018.)
(DECID 𝜑 → ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓)))
 
Theoremjadc 804 Inference forming an implication from the antecedents of two premises, where a decidable antecedent is negated. (Contributed by Jim Kingdon, 25-Mar-2018.)
(DECID 𝜑 → (¬ 𝜑𝜒))    &   (𝜓𝜒)       (DECID 𝜑 → ((𝜑𝜓) → 𝜒))
 
Theoremjaddc 805 Deduction forming an implication from the antecedents of two premises, where a decidable antecedent is negated. (Contributed by Jim Kingdon, 26-Mar-2018.)
(𝜑 → (DECID 𝜓 → (¬ 𝜓𝜃)))    &   (𝜑 → (𝜒𝜃))       (𝜑 → (DECID 𝜓 → ((𝜓𝜒) → 𝜃)))
 
Theorempm2.61dc 806 Case elimination for a decidable proposition. Based on theorem *2.61 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 29-Mar-2018.)
(DECID 𝜑 → ((𝜑𝜓) → ((¬ 𝜑𝜓) → 𝜓)))
 
Theorempm2.5dc 807 Negating an implication for a decidable antecedent. Based on theorem *2.5 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 29-Mar-2018.)
(DECID 𝜑 → (¬ (𝜑𝜓) → (¬ 𝜑𝜓)))
 
Theorempm2.521dc 808 Theorem *2.521 of [WhiteheadRussell] p. 107, but with an additional decidability condition. (Contributed by Jim Kingdon, 5-May-2018.)
(DECID 𝜑 → (¬ (𝜑𝜓) → (𝜓𝜑)))
 
Theoremcon34bdc 809 Contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116, but for a decidable proposition. (Contributed by Jim Kingdon, 24-Apr-2018.)
(DECID 𝜓 → ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)))
 
Theoremnotnotbdc 810 Double negation equivalence for a decidable proposition. Like Theorem *4.13 of [WhiteheadRussell] p. 117, but with a decidability antecendent. The forward direction, notnot 599, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 13-Mar-2018.)
(DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑))
 
Theoremcon1biimdc 811 Contraposition. (Contributed by Jim Kingdon, 4-Apr-2018.)
(DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
 
Theoremcon1bidc 812 Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑))))
 
Theoremcon2bidc 813 Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))))
 
Theoremcon1biddc 814 A contraposition deduction. (Contributed by Jim Kingdon, 4-Apr-2018.)
(𝜑 → (DECID 𝜓 → (¬ 𝜓𝜒)))       (𝜑 → (DECID 𝜓 → (¬ 𝜒𝜓)))
 
Theoremcon1biidc 815 A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
(DECID 𝜑 → (¬ 𝜑𝜓))       (DECID 𝜑 → (¬ 𝜓𝜑))
 
Theoremcon1bdc 816 Contraposition. Bidirectional version of con1dc 797. (Contributed by NM, 5-Aug-1993.)
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑))))
 
Theoremcon2biidc 817 A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
(DECID 𝜓 → (𝜑 ↔ ¬ 𝜓))       (DECID 𝜓 → (𝜓 ↔ ¬ 𝜑))
 
Theoremcon2biddc 818 A contraposition deduction. (Contributed by Jim Kingdon, 11-Apr-2018.)
(𝜑 → (DECID 𝜒 → (𝜓 ↔ ¬ 𝜒)))       (𝜑 → (DECID 𝜒 → (𝜒 ↔ ¬ 𝜓)))
 
Theoremcondandc 819 Proof by contradiction. This only holds for decidable propositions, as it is part of the family of theorems which assume ¬ 𝜓, derive a contradiction, and therefore conclude 𝜓. By contrast, assuming 𝜓, deriving a contradiction, and therefore concluding ¬ 𝜓, as in pm2.65 626, is valid for all propositions. (Contributed by Jim Kingdon, 13-May-2018.)
((𝜑 ∧ ¬ 𝜓) → 𝜒)    &   ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)       (DECID 𝜓 → (𝜑𝜓))
 
Theorembijadc 820 Combine antecedents into a single biconditional. This inference is reminiscent of jadc 804. (Contributed by Jim Kingdon, 4-May-2018.)
(𝜑 → (𝜓𝜒))    &   𝜑 → (¬ 𝜓𝜒))       (DECID 𝜓 → ((𝜑𝜓) → 𝜒))
 
Theorempm5.18dc 821 Relationship between an equivalence and an equivalence with some negation, for decidable propositions. Based on theorem *5.18 of [WhiteheadRussell] p. 124. Given decidability, we can consider ¬ (𝜑 ↔ ¬ 𝜓) to represent "negated exclusive-or". (Contributed by Jim Kingdon, 4-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))
 
Theoremdfandc 822 Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 606. (Contributed by Jim Kingdon, 30-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))))
 
Theorempm2.13dc 823 A decidable proposition or its triple negation is true. Theorem *2.13 of [WhiteheadRussell] p. 101 with decidability condition added. (Contributed by Jim Kingdon, 13-May-2018.)
(DECID 𝜑 → (𝜑 ∨ ¬ ¬ ¬ 𝜑))
 
Theorempm4.63dc 824 Theorem *4.63 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.)
(DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 → ¬ 𝜓) ↔ (𝜑𝜓))))
 
Theorempm4.67dc 825 Theorem *4.67 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.)
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 → ¬ 𝜓) ↔ (¬ 𝜑𝜓))))
 
Theoremannimim 826 Express conjunction in terms of implication. One direction of Theorem *4.61 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as can be seen at annimdc 889. (Contributed by Jim Kingdon, 24-Dec-2017.)
((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
 
Theorempm4.65r 827 One direction of Theorem *4.65 of [WhiteheadRussell] p. 120. The converse holds in classical logic. (Contributed by Jim Kingdon, 28-Jul-2018.)
((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))
 
Theoremdcim 828 An implication between two decidable propositions is decidable. (Contributed by Jim Kingdon, 28-Mar-2018.)
(DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 
Theoremimanim 829 Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 830. (Contributed by Jim Kingdon, 24-Dec-2017.)
((𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))
 
Theoremimandc 830 Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176, with an added decidability condition. The forward direction, imanim 829, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 25-Apr-2018.)
(DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)))
 
Theorempm4.14dc 831 Theorem *4.14 of [WhiteheadRussell] p. 117, given a decidability condition. (Contributed by Jim Kingdon, 24-Apr-2018.)
(DECID 𝜒 → (((𝜑𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)))
 
Theorempm3.37 832 Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))
 
Theorempm4.15 833 Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
(((𝜑𝜓) → ¬ 𝜒) ↔ ((𝜓𝜒) → ¬ 𝜑))
 
Theorempm2.54dc 834 Deriving disjunction from implication for a decidable proposition. Based on theorem *2.54 of [WhiteheadRussell] p. 107. The converse, pm2.53 682, holds whether the proposition is decidable or not. (Contributed by Jim Kingdon, 26-Mar-2018.)
(DECID 𝜑 → ((¬ 𝜑𝜓) → (𝜑𝜓)))
 
Theoremdfordc 835 Definition of 'or' in terms of negation and implication for a decidable proposition. Based on definition of [Margaris] p. 49. One direction, pm2.53 682, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 26-Mar-2018.)
(DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
 
Theorempm2.25dc 836 Elimination of disjunction based on a disjunction, for a decidable proposition. Based on theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
(DECID 𝜑 → (𝜑 ∨ ((𝜑𝜓) → 𝜓)))
 
Theorempm2.68dc 837 Concluding disjunction from implication for a decidable proposition. Based on theorem *2.68 of [WhiteheadRussell] p. 108. Converse of pm2.62 708 and one half of dfor2dc 838. (Contributed by Jim Kingdon, 27-Mar-2018.)
(DECID 𝜑 → (((𝜑𝜓) → 𝜓) → (𝜑𝜓)))
 
Theoremdfor2dc 838 Logical 'or' expressed in terms of implication only, for a decidable proposition. Based on theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 27-Mar-2018.)
(DECID 𝜑 → ((𝜑𝜓) ↔ ((𝜑𝜓) → 𝜓)))
 
Theoremimimorbdc 839 Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.)
(DECID 𝜓 → (((𝜓𝜒) → (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒))))
 
Theoremimordc 840 Implication in terms of disjunction for a decidable proposition. Based on theorem *4.6 of [WhiteheadRussell] p. 120. The reverse direction, imorr 841, holds for all propositions. (Contributed by Jim Kingdon, 20-Apr-2018.)
(DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
 
Theoremimorr 841 Implication in terms of disjunction. One direction of theorem *4.6 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as seen at imordc 840. (Contributed by Jim Kingdon, 21-Jul-2018.)
((¬ 𝜑𝜓) → (𝜑𝜓))
 
Theorempm4.62dc 842 Implication in terms of disjunction. Like Theorem *4.62 of [WhiteheadRussell] p. 120, but for a decidable antecedent. (Contributed by Jim Kingdon, 21-Apr-2018.)
(DECID 𝜑 → ((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)))
 
Theoremianordc 843 Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 711, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
(DECID 𝜑 → (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)))
 
Theoremoibabs 844 Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995.) (Proof shortened by Wolf Lammen, 3-Nov-2013.)
(((𝜑𝜓) → (𝜑𝜓)) ↔ (𝜑𝜓))
 
Theorempm4.64dc 845 Theorem *4.64 of [WhiteheadRussell] p. 120, given a decidability condition. The reverse direction, pm2.53 682, holds for all propositions. (Contributed by Jim Kingdon, 2-May-2018.)
(DECID 𝜑 → ((¬ 𝜑𝜓) ↔ (𝜑𝜓)))
 
Theorempm4.66dc 846 Theorem *4.66 of [WhiteheadRussell] p. 120, given a decidability condition. (Contributed by Jim Kingdon, 2-May-2018.)
(DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
 
Theorempm4.52im 847 One direction of theorem *4.52 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))
 
Theorempm4.53r 848 One direction of theorem *4.53 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
((¬ 𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))
 
Theorempm4.54dc 849 Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))
 
Theorempm4.56 850 Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
 
Theoremoranim 851 Disjunction in terms of conjunction (DeMorgan's law). One direction of Theorem *4.57 of [WhiteheadRussell] p. 120. The converse does not hold intuitionistically but does hold in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
 
Theorempm4.78i 852 Implication distributes over disjunction. One direction of Theorem *4.78 of [WhiteheadRussell] p. 121. The converse holds in classical logic. (Contributed by Jim Kingdon, 15-Jan-2018.)
(((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
 
Theorempm4.79dc 853 Equivalence between a disjunction of two implications, and a conjunction and an implication. Based on theorem *4.79 of [WhiteheadRussell] p. 121 but with additional decidability antecedents. (Contributed by Jim Kingdon, 28-Mar-2018.)
(DECID 𝜑 → (DECID 𝜓 → (((𝜓𝜑) ∨ (𝜒𝜑)) ↔ ((𝜓𝜒) → 𝜑))))
 
Theorempm5.17dc 854 Two ways of stating exclusive-or which are equivalent for a decidable proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 16-Apr-2018.)
(DECID 𝜓 → (((𝜑𝜓) ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)))
 
Theorempm2.85dc 855 Reverse distribution of disjunction over implication, given decidability. Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by Jim Kingdon, 1-Apr-2018.)
(DECID 𝜑 → (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒))))
 
Theoremorimdidc 856 Disjunction distributes over implication. The forward direction, pm2.76 763, is valid intuitionistically. The reverse direction holds if 𝜑 is decidable, as can be seen at pm2.85dc 855. (Contributed by Jim Kingdon, 1-Apr-2018.)
(DECID 𝜑 → ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒))))
 
Theorempm2.26dc 857 Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.)
(DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑𝜓) → 𝜓)))
 
Theorempm4.81dc 858 Theorem *4.81 of [WhiteheadRussell] p. 122, for decidable propositions. This one needs a decidability condition, but compare with pm4.8 664 which holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.)
(DECID 𝜑 → ((¬ 𝜑𝜑) ↔ 𝜑))
 
Theorempm5.11dc 859 A decidable proposition or its negation implies a second proposition. Based on theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 29-Mar-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ∨ (¬ 𝜑𝜓))))
 
Theorempm5.12dc 860 Excluded middle with antecedents for a decidable consequent. Based on theorem *5.12 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜓 → ((𝜑𝜓) ∨ (𝜑 → ¬ 𝜓)))
 
Theorempm5.14dc 861 A decidable proposition is implied by or implies other propositions. Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜓 → ((𝜑𝜓) ∨ (𝜓𝜒)))
 
Theorempm5.13dc 862 An implication holds in at least one direction, where one proposition is decidable. Based on theorem *5.13 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜓 → ((𝜑𝜓) ∨ (𝜓𝜑)))
 
Theorempm5.55dc 863 A disjunction is equivalent to one of its disjuncts, given a decidable disjunct. Based on theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜑 → (((𝜑𝜓) ↔ 𝜑) ∨ ((𝜑𝜓) ↔ 𝜓)))
 
Theorempeircedc 864 Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 788, condc 793, or notnotrdc 795 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.)
(DECID 𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))
 
Theoremlooinvdc 865 The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz, but where one of the propositions is decidable. Using dfor2dc 838, we can see that this expresses "disjunction commutes." Theorem *2.69 of [WhiteheadRussell] p. 108 (plus the decidability condition). (Contributed by NM, 12-Aug-2004.)
(DECID 𝜑 → (((𝜑𝜓) → 𝜓) → ((𝜓𝜑) → 𝜑)))
 
1.2.10  Testable propositions
 
Theoremdftest 866 A proposition is testable iff its negative or double-negative is true. See Chapter 2 [Moschovakis] p. 2.

Our notation for testability is DECID ¬ before the formula in question. For example, DECID ¬ 𝑥 = 𝑦 corresponds to "x = y is testable". (Contributed by David A. Wheeler, 13-Aug-2018.)

(DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑))
 
Theoremtestbitestn 867 A proposition is testable iff its negation is testable. See also dcn 790 (which could be read as "Decidability implies testability"). (Contributed by David A. Wheeler, 6-Dec-2018.)
(DECID ¬ 𝜑DECID ¬ ¬ 𝜑)
 
Theoremstabtestimpdc 868 "Stable and testable" is equivalent to decidable. (Contributed by David A. Wheeler, 13-Aug-2018.)
((STAB 𝜑DECID ¬ 𝜑) ↔ DECID 𝜑)
 
1.2.11  Miscellaneous theorems of propositional calculus
 
Theorempm5.21nd 869 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
((𝜑𝜓) → 𝜃)    &   ((𝜑𝜒) → 𝜃)    &   (𝜃 → (𝜓𝜒))       (𝜑 → (𝜓𝜒))
 
Theorempm5.35 870 Theorem *5.35 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
 
Theorempm5.54dc 871 A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜑 → (((𝜑𝜓) ↔ 𝜑) ∨ ((𝜑𝜓) ↔ 𝜓)))
 
Theorembaib 872 Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜑𝜒))
 
Theorembaibr 873 Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜒𝜑))
 
Theoremrbaib 874 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 ↔ (𝜓𝜒))       (𝜒 → (𝜑𝜓))
 
Theoremrbaibr 875 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 ↔ (𝜓𝜒))       (𝜒 → (𝜓𝜑))
 
Theorembaibd 876 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜒) → (𝜓𝜃))
 
Theoremrbaibd 877 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜃) → (𝜓𝜒))
 
Theorempm5.44 878 Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜑 → (𝜓𝜒))))
 
Theorempm5.6dc 879 Conjunction in antecedent versus disjunction in consequent, for a decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with decidability condition added. The reverse implication holds for all propositions (see pm5.6r 880). (Contributed by Jim Kingdon, 2-Apr-2018.)
(DECID 𝜓 → (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))))
 
Theorempm5.6r 880 Conjunction in antecedent versus disjunction in consequent. One direction of Theorem *5.6 of [WhiteheadRussell] p. 125. If 𝜓 is decidable, the converse also holds (see pm5.6dc 879). (Contributed by Jim Kingdon, 4-Aug-2018.)
((𝜑 → (𝜓𝜒)) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
 
Theoremorcanai 881 Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.)
(𝜑 → (𝜓𝜒))       ((𝜑 ∧ ¬ 𝜓) → 𝜒)
 
Theoremintnan 882 Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
¬ 𝜑        ¬ (𝜓𝜑)
 
Theoremintnanr 883 Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
¬ 𝜑        ¬ (𝜑𝜓)
 
Theoremintnand 884 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ (𝜒𝜓))
 
Theoremintnanrd 885 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ (𝜓𝜒))
 
Theoremdcan 886 A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 
Theoremdcor 887 A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 
Theoremdcbi 888 An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 
Theoremannimdc 889 Express conjunction in terms of implication. The forward direction, annimim 826, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))))
 
Theorempm4.55dc 890 Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.)
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑𝜓) ↔ (𝜑 ∨ ¬ 𝜓))))
 
Theoremorandc 891 Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.)
((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)))
 
Theoremmpbiran 892 Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) (Revised by NM, 9-Jan-2015.)
𝜓    &   (𝜑 ↔ (𝜓𝜒))       (𝜑𝜒)
 
Theoremmpbiran2 893 Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.)
𝜒    &   (𝜑 ↔ (𝜓𝜒))       (𝜑𝜓)
 
Theoremmpbir2an 894 Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.)
𝜓    &   𝜒    &   (𝜑 ↔ (𝜓𝜒))       𝜑
 
Theoremmpbi2and 895 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑 → ((𝜓𝜒) ↔ 𝜃))       (𝜑𝜃)
 
Theoremmpbir2and 896 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
(𝜑𝜒)    &   (𝜑𝜃)    &   (𝜑 → (𝜓 ↔ (𝜒𝜃)))       (𝜑𝜓)
 
Theorempm5.62dc 897 Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
(DECID 𝜓 → (((𝜑𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
 
Theorempm5.63dc 898 Theorem *5.63 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
(DECID 𝜑 → ((𝜑𝜓) ↔ (𝜑 ∨ (¬ 𝜑𝜓))))
 
Theorembianfi 899 A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
¬ 𝜑       (𝜑 ↔ (𝜓𝜑))
 
Theorembianfd 900 A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
(𝜑 → ¬ 𝜓)       (𝜑 → (𝜓 ↔ (𝜓𝜒)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >