ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2anan9r GIF version

Theorem bi2anan9r 597
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2anan9r ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
2 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
31, 2bi2anan9 596 . 2 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
43ancoms 266 1 ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pcval  12224
  Copyright terms: Public domain W3C validator