Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℙ) |
2 | | simprl 526 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℚ) |
3 | | ifnefalse 3537 |
. . . . 5
⊢ (𝑁 ≠ 0 → if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
4 | 3 | ad2antll 488 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
5 | | pcval.1 |
. . . . . 6
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) |
6 | | pcval.2 |
. . . . . 6
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) |
7 | 5, 6 | pceu 12249 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
8 | | euiotaex 5176 |
. . . . 5
⊢
(∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∈ V) |
9 | 7, 8 | syl 14 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∈ V) |
10 | 4, 9 | eqeltrd 2247 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) ∈ V) |
11 | | simpr 109 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → 𝑟 = 𝑁) |
12 | 11 | eqeq1d 2179 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → (𝑟 = 0 ↔ 𝑁 = 0)) |
13 | | eqeq1 2177 |
. . . . . . . 8
⊢ (𝑟 = 𝑁 → (𝑟 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦))) |
14 | | oveq1 5860 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑃 → (𝑝↑𝑛) = (𝑃↑𝑛)) |
15 | 14 | breq1d 3999 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑃 → ((𝑝↑𝑛) ∥ 𝑥 ↔ (𝑃↑𝑛) ∥ 𝑥)) |
16 | 15 | rabbidv 2719 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}) |
17 | 16 | supeq1d 6964 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < )) |
18 | 17, 5 | eqtr4di 2221 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆) |
19 | 14 | breq1d 3999 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑃 → ((𝑝↑𝑛) ∥ 𝑦 ↔ (𝑃↑𝑛) ∥ 𝑦)) |
20 | 19 | rabbidv 2719 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}) |
21 | 20 | supeq1d 6964 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) |
22 | 21, 6 | eqtr4di 2221 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ) = 𝑇) |
23 | 18, 22 | oveq12d 5871 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − 𝑇)) |
24 | 23 | eqeq2d 2182 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑧 = (𝑆 − 𝑇))) |
25 | 13, 24 | bi2anan9r 602 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → ((𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
26 | 25 | 2rexbidv 2495 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
27 | 26 | iotabidv 5181 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
28 | 12, 27 | ifbieq2d 3550 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 𝑁) → if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))))) = if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))))) |
29 | | df-pc 12239 |
. . . 4
⊢ pCnt =
(𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
30 | 28, 29 | ovmpoga 5982 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ∧ if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) ∈ V) → (𝑃 pCnt 𝑁) = if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))))) |
31 | 1, 2, 10, 30 | syl3anc 1233 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = if(𝑁 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))))) |
32 | 31, 4 | eqtrd 2203 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |