| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 609 rspc2gv 2919 ralprg 3717 raltpg 3719 prssg 3824 prsspwg 3827 ssprss 3828 opelopab2a 4352 opelxp 4748 eqrel 4807 eqrelrel 4819 brcog 4888 dff13 5891 resoprab2 6100 ovig 6125 dfoprab4f 6337 f1o2ndf1 6372 eroveu 6771 th3qlem1 6782 th3qlem2 6783 th3q 6785 oviec 6786 endisj 6979 exmidapne 7442 dfplpq2 7537 dfmpq2 7538 ordpipqqs 7557 enq0enq 7614 mulnnnq0 7633 ltsrprg 7930 axcnre 8064 axmulgt0 8214 addltmul 9344 ltxr 9967 sumsqeq0 10835 ccat0 11126 mul0inf 11747 dvds2lem 12309 opoe 12401 omoe 12402 opeo 12403 omeo 12404 gcddvds 12479 dfgcd2 12530 pcqmul 12821 xpsfrnel2 13374 eqgval 13755 txbasval 14935 cnmpt12 14955 cnmpt22 14962 lgsquadlem3 15752 lgsquad 15753 2sqlem7 15794 |
| Copyright terms: Public domain | W3C validator |