| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 607 rspc2gv 2880 ralprg 3673 raltpg 3675 prssg 3779 prsspwg 3782 opelopab2a 4299 opelxp 4693 eqrel 4752 eqrelrel 4764 brcog 4833 dff13 5815 resoprab2 6019 ovig 6044 dfoprab4f 6251 f1o2ndf1 6286 eroveu 6685 th3qlem1 6696 th3qlem2 6697 th3q 6699 oviec 6700 endisj 6883 exmidapne 7327 dfplpq2 7421 dfmpq2 7422 ordpipqqs 7441 enq0enq 7498 mulnnnq0 7517 ltsrprg 7814 axcnre 7948 axmulgt0 8098 addltmul 9228 ltxr 9850 sumsqeq0 10710 mul0inf 11406 dvds2lem 11968 opoe 12060 omoe 12061 opeo 12062 omeo 12063 gcddvds 12130 dfgcd2 12181 pcqmul 12472 xpsfrnel2 12989 eqgval 13353 txbasval 14503 cnmpt12 14523 cnmpt22 14530 lgsquadlem3 15320 lgsquad 15321 2sqlem7 15362 |
| Copyright terms: Public domain | W3C validator |