| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 607 rspc2gv 2896 ralprg 3694 raltpg 3696 prssg 3801 prsspwg 3804 ssprss 3805 opelopab2a 4329 opelxp 4723 eqrel 4782 eqrelrel 4794 brcog 4863 dff13 5860 resoprab2 6065 ovig 6090 dfoprab4f 6302 f1o2ndf1 6337 eroveu 6736 th3qlem1 6747 th3qlem2 6748 th3q 6750 oviec 6751 endisj 6944 exmidapne 7407 dfplpq2 7502 dfmpq2 7503 ordpipqqs 7522 enq0enq 7579 mulnnnq0 7598 ltsrprg 7895 axcnre 8029 axmulgt0 8179 addltmul 9309 ltxr 9932 sumsqeq0 10800 ccat0 11090 mul0inf 11667 dvds2lem 12229 opoe 12321 omoe 12322 opeo 12323 omeo 12324 gcddvds 12399 dfgcd2 12450 pcqmul 12741 xpsfrnel2 13293 eqgval 13674 txbasval 14854 cnmpt12 14874 cnmpt22 14881 lgsquadlem3 15671 lgsquad 15672 2sqlem7 15713 |
| Copyright terms: Public domain | W3C validator |