| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 607 rspc2gv 2880 ralprg 3674 raltpg 3676 prssg 3780 prsspwg 3783 opelopab2a 4300 opelxp 4694 eqrel 4753 eqrelrel 4765 brcog 4834 dff13 5816 resoprab2 6020 ovig 6045 dfoprab4f 6252 f1o2ndf1 6287 eroveu 6686 th3qlem1 6697 th3qlem2 6698 th3q 6700 oviec 6701 endisj 6884 exmidapne 7329 dfplpq2 7423 dfmpq2 7424 ordpipqqs 7443 enq0enq 7500 mulnnnq0 7519 ltsrprg 7816 axcnre 7950 axmulgt0 8100 addltmul 9230 ltxr 9852 sumsqeq0 10712 mul0inf 11408 dvds2lem 11970 opoe 12062 omoe 12063 opeo 12064 omeo 12065 gcddvds 12140 dfgcd2 12191 pcqmul 12482 xpsfrnel2 12999 eqgval 13363 txbasval 14513 cnmpt12 14533 cnmpt22 14540 lgsquadlem3 15330 lgsquad 15331 2sqlem7 15372 |
| Copyright terms: Public domain | W3C validator |