Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi1d 461 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
4 | 3 | anbi2d 460 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
5 | 2, 4 | sylan9bb 458 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bi2anan9r 597 rspc2gv 2842 ralprg 3627 raltpg 3629 prssg 3730 prsspwg 3732 opelopab2a 4243 opelxp 4634 eqrel 4693 eqrelrel 4705 brcog 4771 dff13 5736 resoprab2 5939 ovig 5963 dfoprab4f 6161 f1o2ndf1 6196 eroveu 6592 th3qlem1 6603 th3qlem2 6604 th3q 6606 oviec 6607 endisj 6790 dfplpq2 7295 dfmpq2 7296 ordpipqqs 7315 enq0enq 7372 mulnnnq0 7391 ltsrprg 7688 axcnre 7822 axmulgt0 7970 addltmul 9093 ltxr 9711 sumsqeq0 10533 mul0inf 11182 dvds2lem 11743 opoe 11832 omoe 11833 opeo 11834 omeo 11835 gcddvds 11896 dfgcd2 11947 pcqmul 12235 txbasval 12907 cnmpt12 12927 cnmpt22 12934 2sqlem7 13597 |
Copyright terms: Public domain | W3C validator |