ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2anan9 GIF version

Theorem bi2anan9 606
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2anan9 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2anan9
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21anbi1d 465 . 2 (𝜑 → ((𝜓𝜏) ↔ (𝜒𝜏)))
3 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43anbi2d 464 . 2 (𝜃 → ((𝜒𝜏) ↔ (𝜒𝜂)))
52, 4sylan9bb 462 1 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bi2anan9r  607  rspc2gv  2880  ralprg  3674  raltpg  3676  prssg  3780  prsspwg  3783  opelopab2a  4300  opelxp  4694  eqrel  4753  eqrelrel  4765  brcog  4834  dff13  5818  resoprab2  6023  ovig  6048  dfoprab4f  6260  f1o2ndf1  6295  eroveu  6694  th3qlem1  6705  th3qlem2  6706  th3q  6708  oviec  6709  endisj  6892  exmidapne  7343  dfplpq2  7438  dfmpq2  7439  ordpipqqs  7458  enq0enq  7515  mulnnnq0  7534  ltsrprg  7831  axcnre  7965  axmulgt0  8115  addltmul  9245  ltxr  9867  sumsqeq0  10727  mul0inf  11423  dvds2lem  11985  opoe  12077  omoe  12078  opeo  12079  omeo  12080  gcddvds  12155  dfgcd2  12206  pcqmul  12497  xpsfrnel2  13048  eqgval  13429  txbasval  14587  cnmpt12  14607  cnmpt22  14614  lgsquadlem3  15404  lgsquad  15405  2sqlem7  15446
  Copyright terms: Public domain W3C validator