Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bi2anan9r 607 rspc2gv 2851 ralprg 3640 raltpg 3642 prssg 3746 prsspwg 3748 opelopab2a 4259 opelxp 4650 eqrel 4709 eqrelrel 4721 brcog 4787 dff13 5759 resoprab2 5962 ovig 5986 dfoprab4f 6184 f1o2ndf1 6219 eroveu 6616 th3qlem1 6627 th3qlem2 6628 th3q 6630 oviec 6631 endisj 6814 dfplpq2 7328 dfmpq2 7329 ordpipqqs 7348 enq0enq 7405 mulnnnq0 7424 ltsrprg 7721 axcnre 7855 axmulgt0 8003 addltmul 9128 ltxr 9746 sumsqeq0 10568 mul0inf 11217 dvds2lem 11778 opoe 11867 omoe 11868 opeo 11869 omeo 11870 gcddvds 11931 dfgcd2 11982 pcqmul 12270 txbasval 13347 cnmpt12 13367 cnmpt22 13374 2sqlem7 14037 |
Copyright terms: Public domain | W3C validator |