| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 607 rspc2gv 2880 ralprg 3674 raltpg 3676 prssg 3780 prsspwg 3783 opelopab2a 4300 opelxp 4694 eqrel 4753 eqrelrel 4765 brcog 4834 dff13 5818 resoprab2 6023 ovig 6048 dfoprab4f 6260 f1o2ndf1 6295 eroveu 6694 th3qlem1 6705 th3qlem2 6706 th3q 6708 oviec 6709 endisj 6892 exmidapne 7345 dfplpq2 7440 dfmpq2 7441 ordpipqqs 7460 enq0enq 7517 mulnnnq0 7536 ltsrprg 7833 axcnre 7967 axmulgt0 8117 addltmul 9247 ltxr 9869 sumsqeq0 10729 mul0inf 11425 dvds2lem 11987 opoe 12079 omoe 12080 opeo 12081 omeo 12082 gcddvds 12157 dfgcd2 12208 pcqmul 12499 xpsfrnel2 13050 eqgval 13431 txbasval 14611 cnmpt12 14631 cnmpt22 14638 lgsquadlem3 15428 lgsquad 15429 2sqlem7 15470 |
| Copyright terms: Public domain | W3C validator |