| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 607 rspc2gv 2880 ralprg 3674 raltpg 3676 prssg 3780 prsspwg 3783 opelopab2a 4300 opelxp 4694 eqrel 4753 eqrelrel 4765 brcog 4834 dff13 5818 resoprab2 6023 ovig 6048 dfoprab4f 6260 f1o2ndf1 6295 eroveu 6694 th3qlem1 6705 th3qlem2 6706 th3q 6708 oviec 6709 endisj 6892 exmidapne 7343 dfplpq2 7438 dfmpq2 7439 ordpipqqs 7458 enq0enq 7515 mulnnnq0 7534 ltsrprg 7831 axcnre 7965 axmulgt0 8115 addltmul 9245 ltxr 9867 sumsqeq0 10727 mul0inf 11423 dvds2lem 11985 opoe 12077 omoe 12078 opeo 12079 omeo 12080 gcddvds 12155 dfgcd2 12206 pcqmul 12497 xpsfrnel2 13048 eqgval 13429 txbasval 14587 cnmpt12 14607 cnmpt22 14614 lgsquadlem3 15404 lgsquad 15405 2sqlem7 15446 |
| Copyright terms: Public domain | W3C validator |