ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2anan9 GIF version

Theorem bi2anan9 606
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2anan9 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2anan9
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21anbi1d 465 . 2 (𝜑 → ((𝜓𝜏) ↔ (𝜒𝜏)))
3 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43anbi2d 464 . 2 (𝜃 → ((𝜒𝜏) ↔ (𝜒𝜂)))
52, 4sylan9bb 462 1 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bi2anan9r  607  rspc2gv  2880  ralprg  3674  raltpg  3676  prssg  3780  prsspwg  3783  opelopab2a  4300  opelxp  4694  eqrel  4753  eqrelrel  4765  brcog  4834  dff13  5816  resoprab2  6020  ovig  6045  dfoprab4f  6252  f1o2ndf1  6287  eroveu  6686  th3qlem1  6697  th3qlem2  6698  th3q  6700  oviec  6701  endisj  6884  exmidapne  7329  dfplpq2  7423  dfmpq2  7424  ordpipqqs  7443  enq0enq  7500  mulnnnq0  7519  ltsrprg  7816  axcnre  7950  axmulgt0  8100  addltmul  9230  ltxr  9852  sumsqeq0  10712  mul0inf  11408  dvds2lem  11970  opoe  12062  omoe  12063  opeo  12064  omeo  12065  gcddvds  12140  dfgcd2  12191  pcqmul  12482  xpsfrnel2  12999  eqgval  13363  txbasval  14513  cnmpt12  14533  cnmpt22  14540  lgsquadlem3  15330  lgsquad  15331  2sqlem7  15372
  Copyright terms: Public domain W3C validator