| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi1d 465 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜏))) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 5 | 2, 4 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 607 rspc2gv 2888 ralprg 3683 raltpg 3685 prssg 3789 prsspwg 3792 opelopab2a 4310 opelxp 4704 eqrel 4763 eqrelrel 4775 brcog 4844 dff13 5836 resoprab2 6041 ovig 6066 dfoprab4f 6278 f1o2ndf1 6313 eroveu 6712 th3qlem1 6723 th3qlem2 6724 th3q 6726 oviec 6727 endisj 6918 exmidapne 7371 dfplpq2 7466 dfmpq2 7467 ordpipqqs 7486 enq0enq 7543 mulnnnq0 7562 ltsrprg 7859 axcnre 7993 axmulgt0 8143 addltmul 9273 ltxr 9896 sumsqeq0 10761 ccat0 11050 mul0inf 11523 dvds2lem 12085 opoe 12177 omoe 12178 opeo 12179 omeo 12180 gcddvds 12255 dfgcd2 12306 pcqmul 12597 xpsfrnel2 13149 eqgval 13530 txbasval 14710 cnmpt12 14730 cnmpt22 14737 lgsquadlem3 15527 lgsquad 15528 2sqlem7 15569 |
| Copyright terms: Public domain | W3C validator |