Detailed syntax breakdown of Definition df-clim
Step | Hyp | Ref
| Expression |
1 | | cli 11219 |
. 2
class
⇝ |
2 | | vy |
. . . . . 6
setvar 𝑦 |
3 | 2 | cv 1342 |
. . . . 5
class 𝑦 |
4 | | cc 7751 |
. . . . 5
class
ℂ |
5 | 3, 4 | wcel 2136 |
. . . 4
wff 𝑦 ∈ ℂ |
6 | | vk |
. . . . . . . . . . 11
setvar 𝑘 |
7 | 6 | cv 1342 |
. . . . . . . . . 10
class 𝑘 |
8 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
9 | 8 | cv 1342 |
. . . . . . . . . 10
class 𝑓 |
10 | 7, 9 | cfv 5188 |
. . . . . . . . 9
class (𝑓‘𝑘) |
11 | 10, 4 | wcel 2136 |
. . . . . . . 8
wff (𝑓‘𝑘) ∈ ℂ |
12 | | cmin 8069 |
. . . . . . . . . . 11
class
− |
13 | 10, 3, 12 | co 5842 |
. . . . . . . . . 10
class ((𝑓‘𝑘) − 𝑦) |
14 | | cabs 10939 |
. . . . . . . . . 10
class
abs |
15 | 13, 14 | cfv 5188 |
. . . . . . . . 9
class
(abs‘((𝑓‘𝑘) − 𝑦)) |
16 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
17 | 16 | cv 1342 |
. . . . . . . . 9
class 𝑥 |
18 | | clt 7933 |
. . . . . . . . 9
class
< |
19 | 15, 17, 18 | wbr 3982 |
. . . . . . . 8
wff
(abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥 |
20 | 11, 19 | wa 103 |
. . . . . . 7
wff ((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
21 | | vj |
. . . . . . . . 9
setvar 𝑗 |
22 | 21 | cv 1342 |
. . . . . . . 8
class 𝑗 |
23 | | cuz 9466 |
. . . . . . . 8
class
ℤ≥ |
24 | 22, 23 | cfv 5188 |
. . . . . . 7
class
(ℤ≥‘𝑗) |
25 | 20, 6, 24 | wral 2444 |
. . . . . 6
wff
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
26 | | cz 9191 |
. . . . . 6
class
ℤ |
27 | 25, 21, 26 | wrex 2445 |
. . . . 5
wff
∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
28 | | crp 9589 |
. . . . 5
class
ℝ+ |
29 | 27, 16, 28 | wral 2444 |
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
30 | 5, 29 | wa 103 |
. . 3
wff (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥)) |
31 | 30, 8, 2 | copab 4042 |
. 2
class
{〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
32 | 1, 31 | wceq 1343 |
1
wff ⇝ =
{〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |