Detailed syntax breakdown of Definition df-clim
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cli 11443 | 
. 2
class 
⇝ | 
| 2 |   | vy | 
. . . . . 6
setvar 𝑦 | 
| 3 | 2 | cv 1363 | 
. . . . 5
class 𝑦 | 
| 4 |   | cc 7877 | 
. . . . 5
class
ℂ | 
| 5 | 3, 4 | wcel 2167 | 
. . . 4
wff 𝑦 ∈ ℂ | 
| 6 |   | vk | 
. . . . . . . . . . 11
setvar 𝑘 | 
| 7 | 6 | cv 1363 | 
. . . . . . . . . 10
class 𝑘 | 
| 8 |   | vf | 
. . . . . . . . . . 11
setvar 𝑓 | 
| 9 | 8 | cv 1363 | 
. . . . . . . . . 10
class 𝑓 | 
| 10 | 7, 9 | cfv 5258 | 
. . . . . . . . 9
class (𝑓‘𝑘) | 
| 11 | 10, 4 | wcel 2167 | 
. . . . . . . 8
wff (𝑓‘𝑘) ∈ ℂ | 
| 12 |   | cmin 8197 | 
. . . . . . . . . . 11
class 
− | 
| 13 | 10, 3, 12 | co 5922 | 
. . . . . . . . . 10
class ((𝑓‘𝑘) − 𝑦) | 
| 14 |   | cabs 11162 | 
. . . . . . . . . 10
class
abs | 
| 15 | 13, 14 | cfv 5258 | 
. . . . . . . . 9
class
(abs‘((𝑓‘𝑘) − 𝑦)) | 
| 16 |   | vx | 
. . . . . . . . . 10
setvar 𝑥 | 
| 17 | 16 | cv 1363 | 
. . . . . . . . 9
class 𝑥 | 
| 18 |   | clt 8061 | 
. . . . . . . . 9
class 
< | 
| 19 | 15, 17, 18 | wbr 4033 | 
. . . . . . . 8
wff
(abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥 | 
| 20 | 11, 19 | wa 104 | 
. . . . . . 7
wff ((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) | 
| 21 |   | vj | 
. . . . . . . . 9
setvar 𝑗 | 
| 22 | 21 | cv 1363 | 
. . . . . . . 8
class 𝑗 | 
| 23 |   | cuz 9601 | 
. . . . . . . 8
class
ℤ≥ | 
| 24 | 22, 23 | cfv 5258 | 
. . . . . . 7
class
(ℤ≥‘𝑗) | 
| 25 | 20, 6, 24 | wral 2475 | 
. . . . . 6
wff
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) | 
| 26 |   | cz 9326 | 
. . . . . 6
class
ℤ | 
| 27 | 25, 21, 26 | wrex 2476 | 
. . . . 5
wff
∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) | 
| 28 |   | crp 9728 | 
. . . . 5
class
ℝ+ | 
| 29 | 27, 16, 28 | wral 2475 | 
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) | 
| 30 | 5, 29 | wa 104 | 
. . 3
wff (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥)) | 
| 31 | 30, 8, 2 | copab 4093 | 
. 2
class
{〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | 
| 32 | 1, 31 | wceq 1364 | 
1
wff  ⇝ =
{〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |