| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climrel | GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 11798 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabi 4847 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 class class class wbr 4083 Rel wrel 4724 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 < clt 8189 − cmin 8325 ℤcz 9454 ℤ≥cuz 9730 ℝ+crp 9857 abscabs 11516 ⇝ cli 11797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 df-rel 4726 df-clim 11798 |
| This theorem is referenced by: clim 11800 climcl 11801 climi 11806 fclim 11813 climrecl 11843 iserex 11858 climrecvg1n 11867 climcvg1nlem 11868 fsum3cvg3 11915 trirecip 12020 ntrivcvgap0 12068 |
| Copyright terms: Public domain | W3C validator |