| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climrel | GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 11461 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabi 4792 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 class class class wbr 4034 Rel wrel 4669 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 < clt 8078 − cmin 8214 ℤcz 9343 ℤ≥cuz 9618 ℝ+crp 9745 abscabs 11179 ⇝ cli 11460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 df-rel 4671 df-clim 11461 |
| This theorem is referenced by: clim 11463 climcl 11464 climi 11469 fclim 11476 climrecl 11506 iserex 11521 climrecvg1n 11530 climcvg1nlem 11531 fsum3cvg3 11578 trirecip 11683 ntrivcvgap0 11731 |
| Copyright terms: Public domain | W3C validator |