![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climrel | GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 11422 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabi 4787 | 1 ⊢ Rel ⇝ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 class class class wbr 4029 Rel wrel 4664 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 < clt 8054 − cmin 8190 ℤcz 9317 ℤ≥cuz 9592 ℝ+crp 9719 abscabs 11141 ⇝ cli 11421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 df-rel 4666 df-clim 11422 |
This theorem is referenced by: clim 11424 climcl 11425 climi 11430 fclim 11437 climrecl 11467 iserex 11482 climrecvg1n 11491 climcvg1nlem 11492 fsum3cvg3 11539 trirecip 11644 ntrivcvgap0 11692 |
Copyright terms: Public domain | W3C validator |