ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrel GIF version

Theorem climrel 10632
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel Rel ⇝

Proof of Theorem climrel
Dummy variables 𝑗 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 10631 . 2 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
21relopabi 4551 1 Rel ⇝
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1438  wral 2359  wrex 2360   class class class wbr 3837  Rel wrel 4433  cfv 5002  (class class class)co 5634  cc 7327   < clt 7501  cmin 7632  cz 8720  cuz 8988  +crp 9103  abscabs 10395  cli 10630
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-opab 3892  df-xp 4434  df-rel 4435  df-clim 10631
This theorem is referenced by:  clim  10633  climcl  10634  climi  10639  fclim  10646  climrecl  10676  iserex  10691  climrecvg1n  10701  climcvg1nlem  10702  fisumcvg3  10752  trirecip  10856
  Copyright terms: Public domain W3C validator