![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climrel | GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 11300 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabi 4764 | 1 ⊢ Rel ⇝ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 class class class wbr 4015 Rel wrel 4643 ‘cfv 5228 (class class class)co 5888 ℂcc 7822 < clt 8005 − cmin 8141 ℤcz 9266 ℤ≥cuz 9541 ℝ+crp 9666 abscabs 11019 ⇝ cli 11299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-opab 4077 df-xp 4644 df-rel 4645 df-clim 11300 |
This theorem is referenced by: clim 11302 climcl 11303 climi 11308 fclim 11315 climrecl 11345 iserex 11360 climrecvg1n 11369 climcvg1nlem 11370 fsum3cvg3 11417 trirecip 11522 ntrivcvgap0 11570 |
Copyright terms: Public domain | W3C validator |