| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climrel | GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 11756 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabi 4824 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 class class class wbr 4062 Rel wrel 4701 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 < clt 8149 − cmin 8285 ℤcz 9414 ℤ≥cuz 9690 ℝ+crp 9817 abscabs 11474 ⇝ cli 11755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-opab 4125 df-xp 4702 df-rel 4703 df-clim 11756 |
| This theorem is referenced by: clim 11758 climcl 11759 climi 11764 fclim 11771 climrecl 11801 iserex 11816 climrecvg1n 11825 climcvg1nlem 11826 fsum3cvg3 11873 trirecip 11978 ntrivcvgap0 12026 |
| Copyright terms: Public domain | W3C validator |