| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climrel | GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 11634 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabi 4807 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 class class class wbr 4047 Rel wrel 4684 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 < clt 8114 − cmin 8250 ℤcz 9379 ℤ≥cuz 9655 ℝ+crp 9782 abscabs 11352 ⇝ cli 11633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-opab 4110 df-xp 4685 df-rel 4686 df-clim 11634 |
| This theorem is referenced by: clim 11636 climcl 11637 climi 11642 fclim 11649 climrecl 11679 iserex 11694 climrecvg1n 11703 climcvg1nlem 11704 fsum3cvg3 11751 trirecip 11856 ntrivcvgap0 11904 |
| Copyright terms: Public domain | W3C validator |