HomeHome Intuitionistic Logic Explorer
Theorem List (p. 113 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11201-11300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremswrdrlen 11201 Length of a right-anchored subword. (Contributed by Alexander van der Vekens, 5-Apr-2018.)
((𝑊 ∈ Word 𝑉𝐼 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐼))
 
Theoremswrdlen2 11202 Length of an extracted subword. (Contributed by AV, 5-May-2020.)
((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))
 
Theoremswrdfv2 11203 A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.)
(((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))
 
Theoremswrdwrdsymbg 11204 A subword is a word over the symbols it consists of. (Contributed by AV, 2-Dec-2022.)
((𝑆 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
 
Theoremswrdsb0eq 11205 Two subwords with the same bounds are equal if the range is not valid. (Contributed by AV, 4-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
 
Theoremswrdsbslen 11206 Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
 
Theoremswrdspsleq 11207* Two words have a common subword (starting at the same position with the same length) iff they have the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Proof shortened by AV, 7-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
 
Theoremswrds1 11208 Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
 
Theoremswrdlsw 11209 Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
 
Theoremccatswrd 11210 Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015.)
((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))
 
Theoremswrdccat2 11211 Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)
 
4.7.7  Prefixes of a word
 
Syntaxcpfx 11212 Syntax for the prefix operator.
class prefix
 
Definitiondf-pfx 11213* Define an operation which extracts prefixes of words, i.e. subwords (or substrings) starting at the beginning of a word (or string). In other words, (𝑆 prefix 𝐿) is the prefix of the word 𝑆 of length 𝐿. Definition in Section 9.1 of [AhoHopUll] p. 318. See also Wikipedia "Substring" https://en.wikipedia.org/wiki/Substring#Prefix. (Contributed by AV, 2-May-2020.)
prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
 
Theorempfxval 11214 Value of a prefix operation. (Contributed by AV, 2-May-2020.)
((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
 
Theorempfx00g 11215 The zero length prefix is the empty set. (Contributed by AV, 2-May-2020.)
(𝑆𝑉 → (𝑆 prefix 0) = ∅)
 
Theorempfx0g 11216 A prefix of an empty set is always the empty set. (Contributed by AV, 3-May-2020.)
(𝐿 ∈ ℕ0 → (∅ prefix 𝐿) = ∅)
 
Theoremfnpfx 11217 The domain of the prefix extractor. (Contributed by Jim Kingdon, 8-Jan-2026.)
prefix Fn (V × ℕ0)
 
Theorempfxclg 11218 Closure of the prefix extractor. (Contributed by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) ∈ Word 𝐴)
 
Theorempfxclz 11219 Closure of the prefix extractor. This extends pfxclg 11218 from 0 to (negative lengths are trivial, resulting in the empty word). (Contributed by Jim Kingdon, 8-Jan-2026.)
((𝑆 ∈ Word 𝐴𝐿 ∈ ℤ) → (𝑆 prefix 𝐿) ∈ Word 𝐴)
 
Theorempfxmpt 11220* Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
 
Theorempfxres 11221 Value of the prefix extractor as the restriction of a word. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 ↾ (0..^𝐿)))
 
Theorempfxf 11222 A prefix of a word is a function from a half-open range of nonnegative integers of the same length as the prefix to the set of symbols for the original word. (Contributed by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉)
 
Theorempfxfn 11223 Value of the prefix extractor as function with domain. (Contributed by AV, 2-May-2020.)
((𝑆 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) Fn (0..^𝐿))
 
Theorempfxfv 11224 A symbol in a prefix of a word, indexed using the prefix' indices. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))
 
Theorempfxlen 11225 Length of a prefix. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐿)) = 𝐿)
 
Theorempfxid 11226 A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by AV, 2-May-2020.)
(𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
 
Theorempfxrn 11227 The range of a prefix of a word is a subset of the set of symbols for the word. (Contributed by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) ⊆ 𝑉)
 
Theorempfxn0 11228 A prefix consisting of at least one symbol is not empty. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) ≠ ∅)
 
Theorempfxnd 11229 The value of a prefix operation for a length argument larger than the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfvg 5660). (Contributed by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)
 
Theorempfxwrdsymbg 11230 A prefix of a word is a word over the symbols it consists of. (Contributed by AV, 3-Dec-2022.)
((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) ∈ Word (𝑆 “ (0..^𝐿)))
 
Theoremaddlenpfx 11231 The sum of the lengths of two parts of a word is the length of the word. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 𝑀)) + (♯‘(𝑊 substr ⟨𝑀, (♯‘𝑊)⟩))) = (♯‘𝑊))
 
Theorempfxfv0 11232 The first symbol of a prefix is the first symbol of the word. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘0) = (𝑊‘0))
 
Theorempfxtrcfv 11233 A symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘𝐼) = (𝑊𝐼))
 
Theorempfxtrcfv0 11234 The first symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 prefix ((♯‘𝑊) − 1))‘0) = (𝑊‘0))
 
Theorempfxfvlsw 11235 The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1)))
 
Theorempfxeq 11236* The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 4-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
 
Theorempfxtrcfvl 11237 The last symbol in a word truncated by one symbol. (Contributed by AV, 16-Jun-2018.) (Revised by AV, 5-May-2020.)
((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
 
Theorempfxsuffeqwrdeq 11238 Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 5-May-2020.)
((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
 
Theorempfxsuff1eqwrdeq 11239 Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
 
Theoremdisjwrdpfx 11240* Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.)
Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
 
Theoremccatpfx 11241 Concatenating a prefix with an adjacent subword makes a longer prefix. (Contributed by AV, 7-May-2020.)
((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
 
Theorempfxccat1 11242 Recover the left half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by AV, 6-May-2020.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆)
 
Theorempfx1 11243 The prefix of length one of a nonempty word expressed as a singleton word. (Contributed by AV, 15-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 prefix 1) = ⟨“(𝑊‘0)”⟩)
 
4.7.8  Subwords of subwords
 
Theoremswrdswrdlem 11244 Lemma for swrdswrd 11245. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
(((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
 
Theoremswrdswrd 11245 A subword of a subword is a subword. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))
 
Theorempfxswrd 11246 A prefix of a subword is a subword. (Contributed by AV, 2-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁𝑀)) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩)))
 
Theoremswrdpfx 11247 A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))
 
Theorempfxpfx 11248 A prefix of a prefix is a prefix. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))
 
Theorempfxpfxid 11249 A prefix of a prefix with the same length is the original prefix. In other words, the operation "prefix of length 𝑁 " is idempotent. (Contributed by AV, 5-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) prefix 𝑁) = (𝑊 prefix 𝑁))
 
4.7.9  Subwords and concatenations
 
Theorempfxcctswrd 11250 The concatenation of the prefix of a word and the rest of the word yields the word itself. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑀) ++ (𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) = 𝑊)
 
Theoremlenpfxcctswrd 11251 The length of the concatenation of the prefix of a word and the rest of the word is the length of the word. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 prefix 𝑀) ++ (𝑊 substr ⟨𝑀, (♯‘𝑊)⟩))) = (♯‘𝑊))
 
Theoremlenrevpfxcctswrd 11252 The length of the concatenation of the rest of a word and the prefix of the word is the length of the word. (Contributed by Alexander van der Vekens, 1-Apr-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 substr ⟨𝑀, (♯‘𝑊)⟩) ++ (𝑊 prefix 𝑀))) = (♯‘𝑊))
 
Theorempfxlswccat 11253 Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
 
Theoremccats1pfxeq 11254 The last symbol of a word concatenated with the word with the last symbol removed results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
 
Theoremccats1pfxeqrex 11255* There exists a symbol such that its concatenation after the prefix obtained by deleting the last symbol of a nonempty word results in the word itself. (Contributed by AV, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠𝑉 𝑈 = (𝑊 ++ ⟨“𝑠”⟩)))
 
Theoremccatopth 11256 An opth 4323-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
(((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremccatopth2 11257 An opth 4323-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
(((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremccatlcan 11258 Concatenation of words is left-cancellative. (Contributed by Mario Carneiro, 2-Oct-2015.)
((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐶 ++ 𝐴) = (𝐶 ++ 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremccatrcan 11259 Concatenation of words is right-cancellative. (Contributed by Mario Carneiro, 2-Oct-2015.)
((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremwrdeqs1cat 11260 Decompose a nonempty word by separating off the first symbol. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → 𝑊 = (⟨“(𝑊‘0)”⟩ ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)))
 
Theoremcats1un 11261 Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}))
 
Theoremwrdind 11262* Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))       (𝐴 ∈ Word 𝐵𝜏)
 
Theoremwrd2ind 11263* Perform induction over the structure of two words of the same length. (Contributed by AV, 23-Jan-2019.) (Proof shortened by AV, 12-Oct-2022.)
((𝑥 = ∅ ∧ 𝑤 = ∅) → (𝜑𝜓))    &   ((𝑥 = 𝑦𝑤 = 𝑢) → (𝜑𝜒))    &   ((𝑥 = (𝑦 ++ ⟨“𝑧”⟩) ∧ 𝑤 = (𝑢 ++ ⟨“𝑠”⟩)) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜌𝜏))    &   (𝑤 = 𝐵 → (𝜑𝜌))    &   𝜓    &   (((𝑦 ∈ Word 𝑋𝑧𝑋) ∧ (𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒𝜃))       ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝜏)
 
4.7.10  Subwords of concatenations
 
Theoremswrdccatfn 11264 The subword of a concatenation as function. (Contributed by Alexander van der Vekens, 27-May-2018.)
(((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
 
Theoremswrdccatin1 11265 The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
 
Theorempfxccatin12lem4 11266 Lemma 4 for pfxccatin12 11273. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.)
((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
 
Theorempfxccatin12lem2a 11267 Lemma for pfxccatin12lem2 11271. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
 
Theorempfxccatin12lem1 11268 Lemma 1 for pfxccatin12 11273. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
 
Theoremswrdccatin2 11269 The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
 
Theorempfxccatin12lem2c 11270 Lemma for pfxccatin12lem2 11271 and pfxccatin12lem3 11272. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
 
Theorempfxccatin12lem2 11271 Lemma 2 for pfxccatin12 11273. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
 
Theorempfxccatin12lem3 11272 Lemma 3 for pfxccatin12 11273. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))
 
Theorempfxccatin12 11273 The subword of a concatenation of two words within both of the concatenated words. (Contributed by Alexander van der Vekens, 5-Apr-2018.) (Revised by AV, 9-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
 
Theorempfxccat3 11274 The subword of a concatenation is either a subword of the first concatenated word or a subword of the second concatenated word or a concatenation of a suffix of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))
 
Theoremswrdccat 11275 The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩))))
 
Theorempfxccatpfx1 11276 A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
 
Theorempfxccatpfx2 11277 A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)    &   𝑀 = (♯‘𝐵)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
 
Theorempfxccat3a 11278 A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)    &   𝑀 = (♯‘𝐵)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
 
Theoremswrdccat3blem 11279 Lemma for swrdccat3b 11280. (Contributed by AV, 30-May-2018.)
𝐿 = (♯‘𝐴)       ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
 
Theoremswrdccat3b 11280 A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.) (Proof shortened by AV, 14-Oct-2022.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
 
Theorempfxccatid 11281 A prefix of a concatenation of length of the first concatenated word is the first word itself. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 10-May-2020.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (♯‘𝐴)) → ((𝐴 ++ 𝐵) prefix 𝑁) = 𝐴)
 
Theoremccats1pfxeqbi 11282 A word is a prefix of a word with length greater by 1 than the first word iff the second word is the first word concatenated with the last symbol of the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV, 10-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
 
Theoremswrdccatin1d 11283 The subword of a concatenation of two words within the first of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (0...𝑁))    &   (𝜑𝑁 ∈ (0...𝐿))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
 
Theoremswrdccatin2d 11284 The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (𝐿...𝑁))    &   (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
 
Theorempfxccatin12d 11285 The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (0...𝐿))    &   (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
 
Theoremreuccatpfxs1lem 11286* Lemma for reuccatpfxs1 11287. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
 
Theoremreuccatpfxs1 11287* There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
𝑣𝑋       ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
 
Theoremreuccatpfxs1v 11288* There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2022.) (Proof shortened by AV, 13-Oct-2022.)
((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
 
4.7.11  Longer string literals
 
Syntaxcs2 11289 Syntax for the length 2 word constructor.
class ⟨“𝐴𝐵”⟩
 
Syntaxcs3 11290 Syntax for the length 3 word constructor.
class ⟨“𝐴𝐵𝐶”⟩
 
Syntaxcs4 11291 Syntax for the length 4 word constructor.
class ⟨“𝐴𝐵𝐶𝐷”⟩
 
Syntaxcs5 11292 Syntax for the length 5 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸”⟩
 
Syntaxcs6 11293 Syntax for the length 6 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩
 
Syntaxcs7 11294 Syntax for the length 7 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩
 
Syntaxcs8 11295 Syntax for the length 8 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩
 
Definitiondf-s2 11296 Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
 
Definitiondf-s3 11297 Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
 
Definitiondf-s4 11298 Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
 
Definitiondf-s5 11299 Define the length 5 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩)
 
Definitiondf-s6 11300 Define the length 6 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >