HomeHome Intuitionistic Logic Explorer
Theorem List (p. 113 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11201-11300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrpmincl 11201 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+)
 
Theorembdtrilem 11202 Lemma for bdtri 11203. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
 
Theorembdtri 11203 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
 
Theoremmul0inf 11204 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11026 and mulap0bd 8575 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0))
 
Theoremmingeb 11205 Equivalence of and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴))
 
Theorem2zinfmin 11206 Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐴, 𝐵))
 
4.7.7  The maximum of two extended reals
 
Theoremxrmaxleim 11207 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
 
Theoremxrmaxiflemcl 11208 Lemma for xrmaxif 11214. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
 
Theoremxrmaxifle 11209 An upper bound for {𝐴, 𝐵} in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
Theoremxrmaxiflemab 11210 Lemma for xrmaxif 11214. A variation of xrmaxleim 11207- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)       (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵)
 
Theoremxrmaxiflemlub 11211 Lemma for xrmaxif 11214. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 28-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremxrmaxiflemcom 11212 Lemma for xrmaxif 11214. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
 
Theoremxrmaxiflemval 11213* Lemma for xrmaxif 11214. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
 
Theoremxrmaxif 11214 Maximum of two extended reals in terms of if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
Theoremxrmaxcl 11215 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
 
Theoremxrmax1sup 11216 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
Theoremxrmax2sup 11217 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
Theoremxrmaxrecl 11218 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
 
Theoremxrmaxleastlt 11219 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐶 < sup({𝐴, 𝐵}, ℝ*, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremxrltmaxsup 11220 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < sup({𝐴, 𝐵}, ℝ*, < ) ↔ (𝐶 < 𝐴𝐶 < 𝐵)))
 
Theoremxrmaxltsup 11221 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
Theoremxrmaxlesup 11222 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremxrmaxaddlem 11223 Lemma for xrmaxadd 11224. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
 
Theoremxrmaxadd 11224 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
 
4.7.8  The minimum of two extended reals
 
Theoremxrnegiso 11225 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)       (𝐹 Isom < , < (ℝ*, ℝ*) ∧ 𝐹 = 𝐹)
 
Theoreminfxrnegsupex 11226* The infimum of a set of extended reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
(𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ*)       (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
 
Theoremxrnegcon1d 11227 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴))
 
Theoremxrminmax 11228 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
 
Theoremxrmincl 11229 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
 
Theoremxrmin1inf 11230 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐴)
 
Theoremxrmin2inf 11231 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐵)
 
Theoremxrmineqinf 11232 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
 
Theoremxrltmininf 11233 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 
Theoremxrlemininf 11234 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴𝐵𝐴𝐶)))
 
Theoremxrminltinf 11235 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴𝐶 < 𝐴)))
 
Theoremxrminrecl 11236 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < ))
 
Theoremxrminrpcl 11237 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+)
 
Theoremxrminadd 11238 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
 
Theoremxrbdtri 11239 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
(((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
 
Theoremiooinsup 11240 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )))
 
4.8  Elementary limits and convergence
 
4.8.1  Limits
 
Syntaxcli 11241 Extend class notation with convergence relation for limits.
class
 
Definitiondf-clim 11242* Define the limit relation for complex number sequences. See clim 11244 for its relational expression. (Contributed by NM, 28-Aug-2005.)
⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
 
Theoremclimrel 11243 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Rel ⇝
 
Theoremclim 11244* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑗 such that the absolute difference of any later complex number in the sequence and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝜑𝐹𝑉)    &   ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
 
Theoremclimcl 11245 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐹𝐴𝐴 ∈ ℂ)
 
Theoremclim2 11246* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 11244. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
 
Theoremclim2c 11247* Express the predicate 𝐹 converges to 𝐴. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥))
 
Theoremclim0 11248* Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘𝐵) < 𝑥)))
 
Theoremclim0c 11249* Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
 
Theoremclimi 11250* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹𝐴)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶))
 
Theoremclimi2 11251* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹𝐴)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝐶)
 
Theoremclimi0 11252* Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹 ⇝ 0)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
 
Theoremclimconst 11253* An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   (𝜑𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)       (𝜑𝐹𝐴)
 
Theoremclimconst2 11254 A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
(ℤ𝑀) ⊆ 𝑍    &   𝑍 ∈ V       ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴)
 
Theoremclimz 11255 The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.)
(ℤ × {0}) ⇝ 0
 
Theoremclimuni 11256 An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)
 
Theoremfclim 11257 The limit relation is function-like, and with range the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
⇝ :dom ⇝ ⟶ℂ
 
Theoremclimdm 11258 Two ways to express that a function has a limit. (The expression ( ⇝ ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 18-Mar-2014.)
(𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
 
Theoremclimeu 11259* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
(𝐹𝐴 → ∃!𝑥 𝐹𝑥)
 
Theoremclimreu 11260* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
(𝐹𝐴 → ∃!𝑥 ∈ ℂ 𝐹𝑥)
 
Theoremclimmo 11261* An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.)
∃*𝑥 𝐹𝑥
 
Theoremclimeq 11262* Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (𝐹𝐴𝐺𝐴))
 
Theoremclimmpt 11263* Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))       ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
 
Theorem2clim 11264* If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐺𝑉)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)    &   (𝜑𝐹𝐴)       (𝜑𝐺𝐴)
 
Theoremclimshftlemg 11265 A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))
 
Theoremclimres 11266 A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))
 
Theoremclimshft 11267 A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))
 
Theoremserclim0 11268 The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
(𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
 
Theoremclimshft2 11269* A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝐹𝑊)    &   (𝜑𝐺𝑋)    &   ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))       (𝜑 → (𝐹𝐴𝐺𝐴))
 
Theoremclimabs0 11270* Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
 
Theoremclimcn1 11271* Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝐵)    &   ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐻𝑊)    &   ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐹𝐴))
 
Theoremclimcn2 11272* Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐻𝐵)    &   (𝜑𝐾𝑊)    &   ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)    &   ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))       (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
 
Theoremaddcn2 11273* Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 13346 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
 
Theoremsubcn2 11274* Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
 
Theoremmulcn2 11275* Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
 
Theoremreccn2ap 11276* The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2170. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))       ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
 
Theoremcn1lem 11277* A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝐹:ℂ⟶ℂ    &   ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))       ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
 
Theoremabscn2 11278* The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥))
 
Theoremcjcn2 11279* The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥))
 
Theoremrecn2 11280* The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥))
 
Theoremimcn2 11281* The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥))
 
Theoremclimcn1lem 11282* The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   𝐻:ℂ⟶ℂ    &   ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐻𝐴))
 
Theoremclimabs 11283* Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (abs‘𝐴))
 
Theoremclimcj 11284* Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (∗‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (∗‘𝐴))
 
Theoremclimre 11285* Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (ℜ‘𝐴))
 
Theoremclimim 11286* Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (ℑ‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (ℑ‘𝐴))
 
Theoremclimrecl 11287* The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)       (𝜑𝐴 ∈ ℝ)
 
Theoremclimge0 11288* A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ 𝐴)
 
Theoremclimadd 11289* Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 + 𝐵))
 
Theoremclimmul 11290* Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 · 𝐵))
 
Theoremclimsub 11291* Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴𝐵))
 
Theoremclimaddc1 11292* Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) + 𝐶))       (𝜑𝐺 ⇝ (𝐴 + 𝐶))
 
Theoremclimaddc2 11293* Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 + (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶 + 𝐴))
 
Theoremclimmulc2 11294* Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶 · 𝐴))
 
Theoremclimsubc1 11295* Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))       (𝜑𝐺 ⇝ (𝐴𝐶))
 
Theoremclimsubc2 11296* Limit of a constant 𝐶 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 − (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶𝐴))
 
Theoremclimle 11297* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑𝐴𝐵)
 
Theoremclimsqz 11298* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ 𝐴)       (𝜑𝐺𝐴)
 
Theoremclimsqz2 11299* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))    &   ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))       (𝜑𝐺𝐴)
 
Theoremclim2ser 11300* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)       (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >