Theorem List for Intuitionistic Logic Explorer - 11201-11300 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | pfx1 11201 |
The prefix of length one of a nonempty word expressed as a singleton word.
(Contributed by AV, 15-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 prefix 1) = 〈“(𝑊‘0)”〉) |
| |
| 4.7.8 Subwords of subwords
|
| |
| Theorem | swrdswrdlem 11202 |
Lemma for swrdswrd 11203. (Contributed by Alexander van der Vekens,
4-Apr-2018.)
|
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊)))) |
| |
| Theorem | swrdswrd 11203 |
A subword of a subword is a subword. (Contributed by Alexander van der
Vekens, 4-Apr-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈𝐾, 𝐿〉) = (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉))) |
| |
| Theorem | pfxswrd 11204 |
A prefix of a subword is a subword. (Contributed by AV, 2-Apr-2018.)
(Revised by AV, 8-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁 − 𝑀)) → ((𝑊 substr 〈𝑀, 𝑁〉) prefix 𝐿) = (𝑊 substr 〈𝑀, (𝑀 + 𝐿)〉))) |
| |
| Theorem | swrdpfx 11205 |
A subword of a prefix is a subword. (Contributed by Alexander van der
Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr 〈𝐾, 𝐿〉) = (𝑊 substr 〈𝐾, 𝐿〉))) |
| |
| Theorem | pfxpfx 11206 |
A prefix of a prefix is a prefix. (Contributed by Alexander van der
Vekens, 7-Apr-2018.) (Revised by AV, 8-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿)) |
| |
| Theorem | pfxpfxid 11207 |
A prefix of a prefix with the same length is the original prefix. In
other words, the operation "prefix of length 𝑁 " is idempotent.
(Contributed by AV, 5-Apr-2018.) (Revised by AV, 8-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) prefix 𝑁) = (𝑊 prefix 𝑁)) |
| |
| 4.7.9 Subwords and concatenations
|
| |
| Theorem | pfxcctswrd 11208 |
The concatenation of the prefix of a word and the rest of the word yields
the word itself. (Contributed by AV, 21-Oct-2018.) (Revised by AV,
9-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑀) ++ (𝑊 substr 〈𝑀, (♯‘𝑊)〉)) = 𝑊) |
| |
| Theorem | lenpfxcctswrd 11209 |
The length of the concatenation of the prefix of a word and the rest of
the word is the length of the word. (Contributed by AV, 21-Oct-2018.)
(Revised by AV, 9-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) →
(♯‘((𝑊 prefix
𝑀) ++ (𝑊 substr 〈𝑀, (♯‘𝑊)〉))) = (♯‘𝑊)) |
| |
| Theorem | lenrevpfxcctswrd 11210 |
The length of the concatenation of the rest of a word and the prefix of
the word is the length of the word. (Contributed by Alexander van der
Vekens, 1-Apr-2018.) (Revised by AV, 9-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) →
(♯‘((𝑊 substr
〈𝑀,
(♯‘𝑊)〉)
++ (𝑊 prefix 𝑀))) = (♯‘𝑊)) |
| |
| Theorem | pfxlswccat 11211 |
Reconstruct a nonempty word from its prefix and last symbol. (Contributed
by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++
〈“(lastS‘𝑊)”〉) = 𝑊) |
| |
| Theorem | ccats1pfxeq 11212 |
The last symbol of a word concatenated with the word with the last symbol
removed results in the word itself. (Contributed by Alexander van der
Vekens, 24-Oct-2018.) (Revised by AV, 9-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉))) |
| |
| Theorem | ccats1pfxeqrex 11213* |
There exists a symbol such that its concatenation after the prefix
obtained by deleting the last symbol of a nonempty word results in the
word itself. (Contributed by AV, 5-Oct-2018.) (Revised by AV,
9-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑠”〉))) |
| |
| Theorem | ccatopth 11214 |
An opth 4302-like theorem for recovering the two halves of
a concatenated
word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by
AV, 12-Oct-2022.)
|
| ⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| |
| Theorem | ccatopth2 11215 |
An opth 4302-like theorem for recovering the two halves of
a concatenated
word. (Contributed by Mario Carneiro, 1-Oct-2015.)
|
| ⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| |
| Theorem | ccatlcan 11216 |
Concatenation of words is left-cancellative. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
| ⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋) → ((𝐶 ++ 𝐴) = (𝐶 ++ 𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | ccatrcan 11217 |
Concatenation of words is right-cancellative. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
| ⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | wrdeqs1cat 11218 |
Decompose a nonempty word by separating off the first symbol.
(Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro,
1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
|
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1,
(♯‘𝑊)〉))) |
| |
| Theorem | cats1un 11219 |
Express a word with an extra symbol as the union of the word and the new
value. (Contributed by Mario Carneiro, 28-Feb-2016.)
|
| ⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ++ 〈“𝐵”〉) = (𝐴 ∪ {〈(♯‘𝐴), 𝐵〉})) |
| |
| Theorem | wrdind 11220* |
Perform induction over the structure of a word. (Contributed by Mario
Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(Proof shortened by AV, 12-Oct-2022.)
|
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Word 𝐵 → 𝜏) |
| |
| Theorem | wrd2ind 11221* |
Perform induction over the structure of two words of the same length.
(Contributed by AV, 23-Jan-2019.) (Proof shortened by AV,
12-Oct-2022.)
|
| ⊢ ((𝑥 = ∅ ∧ 𝑤 = ∅) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 = 𝑦 ∧ 𝑤 = 𝑢) → (𝜑 ↔ 𝜒)) & ⊢ ((𝑥 = (𝑦 ++ 〈“𝑧”〉) ∧ 𝑤 = (𝑢 ++ 〈“𝑠”〉)) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜌 ↔ 𝜏)) & ⊢ (𝑤 = 𝐵 → (𝜑 ↔ 𝜌)) & ⊢ 𝜓 & ⊢ (((𝑦 ∈ Word 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∈ Word 𝑌 ∧ 𝑠 ∈ 𝑌) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝜏) |
| |
| 4.7.10 Subwords of concatenations
|
| |
| Theorem | swrdccatfn 11222 |
The subword of a concatenation as function. (Contributed by Alexander van
der Vekens, 27-May-2018.)
|
| ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^(𝑁 − 𝑀))) |
| |
| Theorem | swrdccatin1 11223 |
The subword of a concatenation of two words within the first of the
concatenated words. (Contributed by Alexander van der Vekens,
28-Mar-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉))) |
| |
| Theorem | pfxccatin12lem4 11224 |
Lemma 4 for pfxccatin12 11231. (Contributed by Alexander van der Vekens,
30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.)
|
| ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈ ℤ)
→ ((𝐾 ∈
(0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
| |
| Theorem | pfxccatin12lem2a 11225 |
Lemma for pfxccatin12lem2 11229. (Contributed by AV, 30-Mar-2018.)
(Revised
by AV, 27-May-2018.)
|
| ⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))) |
| |
| Theorem | pfxccatin12lem1 11226 |
Lemma 1 for pfxccatin12 11231. (Contributed by AV, 30-Mar-2018.)
(Revised
by AV, 9-May-2020.)
|
| ⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 − (𝐿 − 𝑀)) ∈ (0..^(𝑁 − 𝐿)))) |
| |
| Theorem | swrdccatin2 11227 |
The subword of a concatenation of two words within the second of the
concatenated words. (Contributed by Alexander van der Vekens,
28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
| |
| Theorem | pfxccatin12lem2c 11228 |
Lemma for pfxccatin12lem2 11229 and pfxccatin12lem3 11230. (Contributed by AV,
30-Mar-2018.) (Revised by AV, 27-May-2018.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
| |
| Theorem | pfxccatin12lem2 11229 |
Lemma 2 for pfxccatin12 11231. (Contributed by AV, 30-Mar-2018.)
(Revised
by AV, 9-May-2020.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉)))))) |
| |
| Theorem | pfxccatin12lem3 11230 |
Lemma 3 for pfxccatin12 11231. (Contributed by AV, 30-Mar-2018.)
(Revised
by AV, 27-May-2018.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐴 substr 〈𝑀, 𝐿〉)‘𝐾))) |
| |
| Theorem | pfxccatin12 11231 |
The subword of a concatenation of two words within both of the
concatenated words. (Contributed by Alexander van der Vekens,
5-Apr-2018.) (Revised by AV, 9-May-2020.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))))) |
| |
| Theorem | pfxccat3 11232 |
The subword of a concatenation is either a subword of the first
concatenated word or a subword of the second concatenated word or a
concatenation of a suffix of the first word with a prefix of the second
word. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised
by AV, 10-May-2020.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))))))) |
| |
| Theorem | swrdccat 11233 |
The subword of a concatenation of two words as concatenation of subwords
of the two concatenated words. (Contributed by Alexander van der
Vekens, 29-May-2018.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, if(𝑁 ≤ 𝐿, 𝑁, 𝐿)〉) ++ (𝐵 substr 〈if(0 ≤ (𝑀 − 𝐿), (𝑀 − 𝐿), 0), (𝑁 − 𝐿)〉)))) |
| |
| Theorem | pfxccatpfx1 11234 |
A prefix of a concatenation being a prefix of the first concatenated
word. (Contributed by AV, 10-May-2020.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) |
| |
| Theorem | pfxccatpfx2 11235 |
A prefix of a concatenation of two words being the first word
concatenated with a prefix of the second word. (Contributed by AV,
10-May-2020.)
|
| ⊢ 𝐿 = (♯‘𝐴)
& ⊢ 𝑀 = (♯‘𝐵) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| |
| Theorem | pfxccat3a 11236 |
A prefix of a concatenation is either a prefix of the first
concatenated word or a concatenation of the first word with a prefix
of the second word. (Contributed by Alexander van der Vekens,
31-Mar-2018.) (Revised by AV, 10-May-2020.)
|
| ⊢ 𝐿 = (♯‘𝐴)
& ⊢ 𝑀 = (♯‘𝐵) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))))) |
| |
| Theorem | swrdccat3blem 11237 |
Lemma for swrdccat3b 11238. (Contributed by AV, 30-May-2018.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (♯‘𝐵)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ 𝐵)) = (𝐴 substr 〈𝑀, (𝐿 + (♯‘𝐵))〉)) |
| |
| Theorem | swrdccat3b 11238 |
A suffix of a concatenation is either a suffix of the second
concatenated word or a concatenation of a suffix of the first word with
the second word. (Contributed by Alexander van der Vekens,
31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.)
(Proof shortened by AV, 14-Oct-2022.)
|
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr 〈𝑀, (𝐿 + (♯‘𝐵))〉) = if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (♯‘𝐵)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ 𝐵)))) |
| |
| Theorem | pfxccatid 11239 |
A prefix of a concatenation of length of the first concatenated word is
the first word itself. (Contributed by Alexander van der Vekens,
20-Sep-2018.) (Revised by AV, 10-May-2020.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = (♯‘𝐴)) → ((𝐴 ++ 𝐵) prefix 𝑁) = 𝐴) |
| |
| Theorem | ccats1pfxeqbi 11240 |
A word is a prefix of a word with length greater by 1 than the first word
iff the second word is the first word concatenated with the last symbol of
the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV,
10-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉))) |
| |
| Theorem | swrdccatin1d 11241 |
The subword of a concatenation of two words within the first of the
concatenated words. (Contributed by AV, 31-May-2018.) (Revised by
Mario Carneiro/AV, 21-Oct-2018.)
|
| ⊢ (𝜑 → (♯‘𝐴) = 𝐿)
& ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...𝐿)) ⇒ ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉)) |
| |
| Theorem | swrdccatin2d 11242 |
The subword of a concatenation of two words within the second of the
concatenated words. (Contributed by AV, 31-May-2018.) (Revised by
Mario Carneiro/AV, 21-Oct-2018.)
|
| ⊢ (𝜑 → (♯‘𝐴) = 𝐿)
& ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) & ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ⇒ ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| |
| Theorem | pfxccatin12d 11243 |
The subword of a concatenation of two words within both of the
concatenated words. (Contributed by AV, 31-May-2018.) (Revised by
AV, 10-May-2020.)
|
| ⊢ (𝜑 → (♯‘𝐴) = 𝐿)
& ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) & ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) & ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ⇒ ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| |
| Theorem | reuccatpfxs1lem 11244* |
Lemma for reuccatpfxs1 11245. (Contributed by Alexander van der Vekens,
5-Oct-2018.) (Revised by AV, 9-May-2020.)
|
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ ∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“𝑆”〉))) |
| |
| Theorem | reuccatpfxs1 11245* |
There is a unique word having the length of a given word increased by 1
with the given word as prefix if there is a unique symbol which extends
the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.)
(Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
|
| ⊢ Ⅎ𝑣𝑋 ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))) |
| |
| Theorem | reuccatpfxs1v 11246* |
There is a unique word having the length of a given word increased by 1
with the given word as prefix if there is a unique symbol which extends
the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.)
(Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2022.) (Proof
shortened by AV, 13-Oct-2022.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))) |
| |
| 4.7.11 Longer string literals
|
| |
| Syntax | cs2 11247 |
Syntax for the length 2 word constructor.
|
| class 〈“𝐴𝐵”〉 |
| |
| Syntax | cs3 11248 |
Syntax for the length 3 word constructor.
|
| class 〈“𝐴𝐵𝐶”〉 |
| |
| Syntax | cs4 11249 |
Syntax for the length 4 word constructor.
|
| class 〈“𝐴𝐵𝐶𝐷”〉 |
| |
| Syntax | cs5 11250 |
Syntax for the length 5 word constructor.
|
| class 〈“𝐴𝐵𝐶𝐷𝐸”〉 |
| |
| Syntax | cs6 11251 |
Syntax for the length 6 word constructor.
|
| class 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 |
| |
| Syntax | cs7 11252 |
Syntax for the length 7 word constructor.
|
| class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 |
| |
| Syntax | cs8 11253 |
Syntax for the length 8 word constructor.
|
| class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 |
| |
| Definition | df-s2 11254 |
Define the length 2 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++
〈“𝐵”〉) |
| |
| Definition | df-s3 11255 |
Define the length 3 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| |
| Definition | df-s4 11256 |
Define the length 4 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| |
| Definition | df-s5 11257 |
Define the length 5 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) |
| |
| Definition | df-s6 11258 |
Define the length 6 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹”〉) |
| |
| Definition | df-s7 11259 |
Define the length 7 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) |
| |
| Definition | df-s8 11260 |
Define the length 8 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) |
| |
| Theorem | cats1cld 11261 |
Closure of concatenation with a singleton word. (Contributed by Mario
Carneiro, 26-Feb-2016.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴)
& ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑇 ∈ Word 𝐴) |
| |
| Theorem | cats1fvn 11262 |
The last symbol of a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢
(♯‘𝑆) =
𝑀
⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
| |
| Theorem | cats1fvnd 11263 |
The last symbol of a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim
Kingdon, 20-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → (♯‘𝑆) = 𝑀) ⇒ ⊢ (𝜑 → (𝑇‘𝑀) = 𝑋) |
| |
| Theorem | cats1fvd 11264 |
A symbol other than the last in a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim
Kingdon, 20-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑆) = 𝑀)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (𝜑 → (𝑆‘𝑁) = 𝑌)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝑇‘𝑁) = 𝑌) |
| |
| Theorem | cats1lend 11265 |
The length of concatenation with a singleton word. (Contributed by
Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon,
19-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (♯‘𝑆) = 𝑀
& ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (𝜑 → (♯‘𝑇) = 𝑁) |
| |
| Theorem | cats1catd 11266 |
Closure of concatenation with a singleton word. (Contributed by Mario
Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝐴 ∈ Word V) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 = (𝐵 ++ 〈“𝑋”〉)) & ⊢ (𝜑 → 𝐵 = (𝐴 ++ 𝑆)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ++ 𝑇)) |
| |
| Theorem | cats2catd 11267 |
Closure of concatenation of concatenations with singleton words.
(Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon,
19-Jan-2026.)
|
| ⊢ (𝜑 → 𝐵 ∈ Word V) & ⊢ (𝜑 → 𝐷 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑊)
& ⊢ (𝜑 → 𝐴 = (𝐵 ++ 〈“𝑋”〉)) & ⊢ (𝜑 → 𝐶 = (〈“𝑌”〉 ++ 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷)) |
| |
| Theorem | s2eqd 11268 |
Equality theorem for a doubleton word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| |
| Theorem | s3eqd 11269 |
Equality theorem for a length 3 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| |
| Theorem | s4eqd 11270 |
Equality theorem for a length 4 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
| |
| Theorem | s5eqd 11271 |
Equality theorem for a length 5 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 = 〈“𝑁𝑂𝑃𝑄𝑅”〉) |
| |
| Theorem | s6eqd 11272 |
Equality theorem for a length 6 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅)
& ⊢ (𝜑 → 𝐹 = 𝑆) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉) |
| |
| Theorem | s7eqd 11273 |
Equality theorem for a length 7 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅)
& ⊢ (𝜑 → 𝐹 = 𝑆)
& ⊢ (𝜑 → 𝐺 = 𝑇) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
| |
| Theorem | s8eqd 11274 |
Equality theorem for a length 8 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅)
& ⊢ (𝜑 → 𝐹 = 𝑆)
& ⊢ (𝜑 → 𝐺 = 𝑇)
& ⊢ (𝜑 → 𝐻 = 𝑈) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
| |
| Theorem | s3eq2 11275 |
Equality theorem for a length 3 word for the second symbol. (Contributed
by AV, 4-Jan-2022.)
|
| ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| |
| Theorem | s2cld 11276 |
A doubleton word is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
| |
| Theorem | s3cld 11277 |
A length 3 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) |
| |
| Theorem | s4cld 11278 |
A length 4 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word 𝑋) |
| |
| Theorem | s5cld 11279 |
A length 5 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 ∈ Word 𝑋) |
| |
| Theorem | s6cld 11280 |
A length 6 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ∈ Word 𝑋) |
| |
| Theorem | s7cld 11281 |
A length 7 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ∈ Word 𝑋) |
| |
| Theorem | s8cld 11282 |
A length 8 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ∈ 𝑋)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 ∈ Word 𝑋) |
| |
| Theorem | s2cl 11283 |
A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
| |
| Theorem | s3cl 11284 |
A length 3 string is a word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) |
| |
| Theorem | s2fv0g 11285 |
Extract the first symbol from a doubleton word. (Contributed by Stefan
O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴𝐵”〉‘0) = 𝐴) |
| |
| Theorem | s2fv1g 11286 |
Extract the second symbol from a doubleton word. (Contributed by Stefan
O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴𝐵”〉‘1) = 𝐵) |
| |
| Theorem | s2leng 11287 |
The length of a doubleton word. (Contributed by Stefan O'Rear,
23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (♯‘〈“𝐴𝐵”〉) = 2) |
| |
| Theorem | s2dmg 11288 |
The domain of a doubleton word is an unordered pair. (Contributed by AV,
9-Jan-2020.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom 〈“𝐴𝐵”〉 = {0, 1}) |
| |
| Theorem | s3fv0g 11289 |
Extract the first symbol from a length 3 string. (Contributed by Mario
Carneiro, 13-Jan-2017.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| |
| Theorem | s3fv1g 11290 |
Extract the second symbol from a length 3 string. (Contributed by Mario
Carneiro, 13-Jan-2017.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| |
| 4.8 Elementary real and complex
functions
|
| |
| 4.8.1 The "shift" operation
|
| |
| Syntax | cshi 11291 |
Extend class notation with function shifter.
|
| class shift |
| |
| Definition | df-shft 11292* |
Define a function shifter. This operation offsets the value argument of
a function (ordinarily on a subset of ℂ)
and produces a new
function on ℂ. See shftval 11302 for its value. (Contributed by NM,
20-Jul-2005.)
|
| ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
| |
| Theorem | shftlem 11293* |
Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario
Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = (𝑦 + 𝐴)}) |
| |
| Theorem | shftuz 11294* |
A shift of the upper integers. (Contributed by Mario Carneiro,
5-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈
(ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
| |
| Theorem | shftfvalg 11295* |
The value of the sequence shifter operation is a function on ℂ.
𝐴 is ordinarily an integer.
(Contributed by NM, 20-Jul-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| |
| Theorem | ovshftex 11296 |
Existence of the result of applying shift. (Contributed by Jim Kingdon,
15-Aug-2021.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
| |
| Theorem | shftfibg 11297 |
Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon,
15-Aug-2021.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
| |
| Theorem | shftfval 11298* |
The value of the sequence shifter operation is a function on ℂ.
𝐴 is ordinarily an integer.
(Contributed by NM, 20-Jul-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| |
| Theorem | shftdm 11299* |
Domain of a relation shifted by 𝐴. The set on the right is more
commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every
element of dom 𝐹). (Contributed by Mario Carneiro,
3-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
| |
| Theorem | shftfib 11300 |
Value of a fiber of the relation 𝐹. (Contributed by Mario
Carneiro, 4-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |