Theorem List for Intuitionistic Logic Explorer - 11201-11300 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | rpmincl 11201 |
The minumum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ+) |
|
Theorem | bdtrilem 11202 |
Lemma for bdtri 11203. (Contributed by Steven Nguyen and Jim
Kingdon,
17-May-2023.)
|
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))) |
|
Theorem | bdtri 11203 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < ))) |
|
Theorem | mul0inf 11204 |
Equality of a product with zero. A bit of a curiosity, in the sense that
theorems like abs00ap 11026 and mulap0bd 8575 may better express the ideas behind
it. (Contributed by Jim Kingdon, 31-Jul-2023.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
|
Theorem | mingeb 11205 |
Equivalence of ≤ and being equal to the minimum of
two reals.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
|
Theorem | 2zinfmin 11206 |
Two ways to express the minimum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
|
4.7.7 The maximum of two extended
reals
|
|
Theorem | xrmaxleim 11207 |
Value of maximum when we know which extended real is larger.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)) |
|
Theorem | xrmaxiflemcl 11208 |
Lemma for xrmaxif 11214. Closure. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈
ℝ*) |
|
Theorem | xrmaxifle 11209 |
An upper bound for {𝐴, 𝐵} in the extended reals.
(Contributed by
Jim Kingdon, 26-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
|
Theorem | xrmaxiflemab 11210 |
Lemma for xrmaxif 11214. A variation of xrmaxleim 11207- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵) |
|
Theorem | xrmaxiflemlub 11211 |
Lemma for xrmaxif 11214. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 28-Apr-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, <
)))))) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | xrmaxiflemcom 11212 |
Lemma for xrmaxif 11214. Commutativity of an expression which we
will
later show to be the supremum. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
|
Theorem | xrmaxiflemval 11213* |
Lemma for xrmaxif 11214. Value of the supremum. (Contributed by
Jim
Kingdon, 29-Apr-2023.)
|
⊢ 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, <
))))) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝑀 ∈
ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |
|
Theorem | xrmaxif 11214 |
Maximum of two extended reals in terms of if
expressions.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ sup({𝐴, 𝐵}, ℝ*, < )
= if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
|
Theorem | xrmaxcl 11215 |
The maximum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 29-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ sup({𝐴, 𝐵}, ℝ*, < )
∈ ℝ*) |
|
Theorem | xrmax1sup 11216 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, <
)) |
|
Theorem | xrmax2sup 11217 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, <
)) |
|
Theorem | xrmaxrecl 11218 |
The maximum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | xrmaxleastlt 11219 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐶 ∈
ℝ* ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ*, < ))) →
(𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | xrltmaxsup 11220 |
The maximum as a least upper bound. (Contributed by Jim Kingdon,
10-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐶 < sup({𝐴, 𝐵}, ℝ*, < ) ↔
(𝐶 < 𝐴 ∨ 𝐶 < 𝐵))) |
|
Theorem | xrmaxltsup 11221 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 30-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
|
Theorem | xrmaxlesup 11222 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 10-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
|
Theorem | xrmaxaddlem 11223 |
Lemma for xrmaxadd 11224. The case where 𝐴 is real. (Contributed
by
Jim Kingdon, 11-May-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)
→ sup({(𝐴
+𝑒 𝐵),
(𝐴 +𝑒
𝐶)}, ℝ*,
< ) = (𝐴
+𝑒 sup({𝐵, 𝐶}, ℝ*, <
))) |
|
Theorem | xrmaxadd 11224 |
Distributing addition over maximum. (Contributed by Jim Kingdon,
11-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒
sup({𝐵, 𝐶}, ℝ*, <
))) |
|
4.7.8 The minimum of two extended
reals
|
|
Theorem | xrnegiso 11225 |
Negation is an order anti-isomorphism of the extended reals, which is
its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
|
⊢ 𝐹 = (𝑥 ∈ ℝ* ↦
-𝑒𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ*,
ℝ*) ∧ ◡𝐹 = 𝐹) |
|
Theorem | infxrnegsupex 11226* |
The infimum of a set of extended reals 𝐴 is the negative of the
supremum of the negatives of its elements. (Contributed by Jim Kingdon,
2-May-2023.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆
ℝ*) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < )) |
|
Theorem | xrnegcon1d 11227 |
Contraposition law for extended real unary minus. (Contributed by Jim
Kingdon, 2-May-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈
ℝ*) ⇒ ⊢ (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴)) |
|
Theorem | xrminmax 11228 |
Minimum expressed in terms of maximum. (Contributed by Jim Kingdon,
2-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
= -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, <
)) |
|
Theorem | xrmincl 11229 |
The minumum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 3-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
∈ ℝ*) |
|
Theorem | xrmin1inf 11230 |
The minimum of two extended reals is less than or equal to the first.
(Contributed by Jim Kingdon, 3-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
≤ 𝐴) |
|
Theorem | xrmin2inf 11231 |
The minimum of two extended reals is less than or equal to the second.
(Contributed by Jim Kingdon, 3-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ inf({𝐴, 𝐵}, ℝ*, < )
≤ 𝐵) |
|
Theorem | xrmineqinf 11232 |
The minimum of two extended reals is equal to the second if the first is
bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim
Kingdon, 3-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐵 ≤ 𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵) |
|
Theorem | xrltmininf 11233 |
Two ways of saying an extended real is less than the minimum of two
others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
3-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐴 < inf({𝐵, 𝐶}, ℝ*, < ) ↔
(𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
|
Theorem | xrlemininf 11234 |
Two ways of saying a number is less than or equal to the minimum of two
others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 4-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔
(𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
|
Theorem | xrminltinf 11235 |
Two ways of saying an extended real is greater than the minimum of two
others. (Contributed by Jim Kingdon, 19-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐴))) |
|
Theorem | xrminrecl 11236 |
The minimum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | xrminrpcl 11237 |
The minimum of two positive reals is a positive real. (Contributed by Jim
Kingdon, 4-May-2023.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ inf({𝐴, 𝐵}, ℝ*, < )
∈ ℝ+) |
|
Theorem | xrminadd 11238 |
Distributing addition over minimum. (Contributed by Jim Kingdon,
10-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒
inf({𝐵, 𝐶}, ℝ*, <
))) |
|
Theorem | xrbdtri 11239 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ*
∧ 0 ≤ 𝐵) ∧
(𝐶 ∈
ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤
(inf({𝐴, 𝐶}, ℝ*, < )
+𝑒 inf({𝐵, 𝐶}, ℝ*, <
))) |
|
Theorem | iooinsup 11240 |
Intersection of two open intervals of extended reals. (Contributed by
NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
|
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐶 ∈
ℝ* ∧ 𝐷 ∈ ℝ*)) →
((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, <
))) |
|
4.8 Elementary limits and
convergence
|
|
4.8.1 Limits
|
|
Syntax | cli 11241 |
Extend class notation with convergence relation for limits.
|
class ⇝ |
|
Definition | df-clim 11242* |
Define the limit relation for complex number sequences. See clim 11244
for
its relational expression. (Contributed by NM, 28-Aug-2005.)
|
⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
|
Theorem | climrel 11243 |
The limit relation is a relation. (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ Rel ⇝ |
|
Theorem | clim 11244* |
Express the predicate: The limit of complex number sequence 𝐹 is
𝐴, or 𝐹 converges to 𝐴. This
means that for any real
𝑥, no matter how small, there always
exists an integer 𝑗 such
that the absolute difference of any later complex number in the sequence
and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 28-Apr-2015.)
|
⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
|
Theorem | climcl 11245 |
Closure of the limit of a sequence of complex numbers. (Contributed by
NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
|
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
|
Theorem | clim2 11246* |
Express the predicate: The limit of complex number sequence 𝐹 is
𝐴, or 𝐹 converges to 𝐴, with
more general quantifier
restrictions than clim 11244. (Contributed by NM, 6-Jan-2007.) (Revised
by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
|
Theorem | clim2c 11247* |
Express the predicate 𝐹 converges to 𝐴. (Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) |
|
Theorem | clim0 11248* |
Express the predicate 𝐹 converges to 0. (Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘𝐵) < 𝑥))) |
|
Theorem | clim0c 11249* |
Express the predicate 𝐹 converges to 0. (Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
|
Theorem | climi 11250* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶)) |
|
Theorem | climi2 11251* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
|
Theorem | climi0 11252* |
Convergence of a sequence of complex numbers to zero. (Contributed by
NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → 𝐹 ⇝ 0) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
|
Theorem | climconst 11253* |
An (eventually) constant sequence converges to its value. (Contributed
by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
|
Theorem | climconst2 11254 |
A constant sequence converges to its value. (Contributed by NM,
6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ (ℤ≥‘𝑀) ⊆ 𝑍
& ⊢ 𝑍 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) |
|
Theorem | climz 11255 |
The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ (ℤ × {0}) ⇝
0 |
|
Theorem | climuni 11256 |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro,
31-Jan-2014.)
|
⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵) → 𝐴 = 𝐵) |
|
Theorem | fclim 11257 |
The limit relation is function-like, and with range the complex numbers.
(Contributed by Mario Carneiro, 31-Jan-2014.)
|
⊢ ⇝ :dom ⇝
⟶ℂ |
|
Theorem | climdm 11258 |
Two ways to express that a function has a limit. (The expression
( ⇝ ‘𝐹) is sometimes useful as a shorthand
for "the unique limit
of the function 𝐹"). (Contributed by Mario
Carneiro,
18-Mar-2014.)
|
⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) |
|
Theorem | climeu 11259* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|
⊢ (𝐹 ⇝ 𝐴 → ∃!𝑥 𝐹 ⇝ 𝑥) |
|
Theorem | climreu 11260* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|
⊢ (𝐹 ⇝ 𝐴 → ∃!𝑥 ∈ ℂ 𝐹 ⇝ 𝑥) |
|
Theorem | climmo 11261* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by Mario Carneiro, 13-Jul-2013.)
|
⊢ ∃*𝑥 𝐹 ⇝ 𝑥 |
|
Theorem | climeq 11262* |
Two functions that are eventually equal to one another have the same
limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario
Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
|
Theorem | climmpt 11263* |
Exhibit a function 𝐺 with the same convergence properties
as the
not-quite-function 𝐹. (Contributed by Mario Carneiro,
31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
|
Theorem | 2clim 11264* |
If two sequences converge to each other, they converge to the same
limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario
Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥)
& ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
|
Theorem | climshftlemg 11265 |
A shifted function converges if the original function converges.
(Contributed by Mario Carneiro, 5-Nov-2013.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴)) |
|
Theorem | climres 11266 |
A function restricted to upper integers converges iff the original
function converges. (Contributed by Mario Carneiro, 13-Jul-2013.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾
(ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
|
Theorem | climshft 11267 |
A shifted function converges iff the original function converges.
(Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
|
Theorem | serclim0 11268 |
The zero series converges to zero. (Contributed by Paul Chapman,
9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
|
⊢ (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝
0) |
|
Theorem | climshft2 11269* |
A shifted function converges iff the original function converges.
(Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario
Carneiro, 6-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑊)
& ⊢ (𝜑 → 𝐺 ∈ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
|
Theorem | climabs0 11270* |
Convergence to zero of the absolute value is equivalent to convergence
to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
|
Theorem | climcn1 11271* |
Image of a limit under a continuous map. (Contributed by Mario
Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐵 ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐹‘𝐴)) |
|
Theorem | climcn2 11272* |
Image of a limit under a continuous map, two-arg version. (Contributed
by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐶)
& ⊢ (𝜑 → 𝐵 ∈ 𝐷)
& ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐶 ∧ 𝑣 ∈ 𝐷)) → (𝑢𝐹𝑣) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ⇝ 𝐵)
& ⊢ (𝜑 → 𝐾 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ 𝐶 ∀𝑣 ∈ 𝐷 (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐶)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾‘𝑘) = ((𝐺‘𝑘)𝐹(𝐻‘𝑘))) ⇒ ⊢ (𝜑 → 𝐾 ⇝ (𝐴𝐹𝐵)) |
|
Theorem | addcn2 11273* |
Complex number addition is a continuous function. Part of Proposition
14-4.16 of [Gleason] p. 243. (We write
out the definition directly
because df-cn and df-cncf are not yet available to us. See addcncntop 13346
for the abbreviated version.) (Contributed by Mario Carneiro,
31-Jan-2014.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)) |
|
Theorem | subcn2 11274* |
Complex number subtraction is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 − 𝑣) − (𝐵 − 𝐶))) < 𝐴)) |
|
Theorem | mulcn2 11275* |
Complex number multiplication is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) |
|
Theorem | reccn2ap 11276* |
The reciprocal function is continuous. The class 𝑇 is just for
convenience in writing the proof and typically would be passed in as an
instance of eqid 2170. (Contributed by Mario Carneiro,
9-Feb-2014.)
Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
|
⊢ 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ·
((abs‘𝐴) /
2)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) |
|
Theorem | cn1lem 11277* |
A sufficient condition for a function to be continuous. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) →
(abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
|
Theorem | abscn2 11278* |
The absolute value function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥)) |
|
Theorem | cjcn2 11279* |
The complex conjugate function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) |
|
Theorem | recn2 11280* |
The real part function is continuous. (Contributed by Mario Carneiro,
9-Feb-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥)) |
|
Theorem | imcn2 11281* |
The imaginary part function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥)) |
|
Theorem | climcn1lem 11282* |
The limit of a continuous function, theorem form. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ 𝐻:ℂ⟶ℂ & ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
|
Theorem | climabs 11283* |
Limit of the absolute value of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (abs‘𝐴)) |
|
Theorem | climcj 11284* |
Limit of the complex conjugate of a sequence. Proposition 12-2.4(c)
of [Gleason] p. 172. (Contributed by
NM, 7-Jun-2006.) (Revised by
Mario Carneiro, 9-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (∗‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (∗‘𝐴)) |
|
Theorem | climre 11285* |
Limit of the real part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℜ‘𝐴)) |
|
Theorem | climim 11286* |
Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℑ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℑ‘𝐴)) |
|
Theorem | climrecl 11287* |
The limit of a convergent real sequence is real. Corollary 12-2.5 of
[Gleason] p. 172. (Contributed by NM,
10-Sep-2005.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) |
|
Theorem | climge0 11288* |
A nonnegative sequence converges to a nonnegative number. (Contributed
by NM, 11-Sep-2005.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) |
|
Theorem | climadd 11289* |
Limit of the sum of two converging sequences. Proposition 12-2.1(a)
of [Gleason] p. 168. (Contributed
by NM, 24-Sep-2005.) (Proof
shortened by Mario Carneiro, 31-Jan-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
|
Theorem | climmul 11290* |
Limit of the product of two converging sequences. Proposition
12-2.1(c) of [Gleason] p. 168.
(Contributed by NM, 27-Dec-2005.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
|
Theorem | climsub 11291* |
Limit of the difference of two converging sequences. Proposition
12-2.1(b) of [Gleason] p. 168.
(Contributed by NM, 4-Aug-2007.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 − 𝐵)) |
|
Theorem | climaddc1 11292* |
Limit of a constant 𝐶 added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) |
|
Theorem | climaddc2 11293* |
Limit of a constant 𝐶 added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) |
|
Theorem | climmulc2 11294* |
Limit of a sequence multiplied by a constant 𝐶. Corollary
12-2.2 of [Gleason] p. 171.
(Contributed by NM, 24-Sep-2005.)
(Revised by Mario Carneiro, 3-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) |
|
Theorem | climsubc1 11295* |
Limit of a constant 𝐶 subtracted from each term of a
sequence.
(Contributed by Mario Carneiro, 9-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) − 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 − 𝐶)) |
|
Theorem | climsubc2 11296* |
Limit of a constant 𝐶 minus each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
9-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) |
|
Theorem | climle 11297* |
Comparison of the limits of two sequences. (Contributed by Paul
Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
|
Theorem | climsqz 11298* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by
Mario Carneiro, 3-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
|
Theorem | climsqz2 11299* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised
by Mario Carneiro, 3-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
|
Theorem | clim2ser 11300* |
The limit of an infinite series with an initial segment removed.
(Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario
Carneiro, 1-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁))) |