HomeHome Intuitionistic Logic Explorer
Theorem List (p. 113 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11201-11300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremresqrexlemcvg 11201* Lemma for resqrex 11208. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
 
Theoremresqrexlemgt0 11202* Lemma for resqrex 11208. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))       (𝜑 → 0 ≤ 𝐿)
 
Theoremresqrexlemoverl 11203* Lemma for resqrex 11208. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   (𝜑𝐾 ∈ ℕ)       (𝜑𝐿 ≤ (𝐹𝐾))
 
Theoremresqrexlemglsq 11204* Lemma for resqrex 11208. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))       (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
 
Theoremresqrexlemga 11205* Lemma for resqrex 11208. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))       (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
 
Theoremresqrexlemsqa 11206* Lemma for resqrex 11208. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))       (𝜑 → (𝐿↑2) = 𝐴)
 
Theoremresqrexlemex 11207* Lemma for resqrex 11208. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
 
Theoremresqrex 11208* Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
 
Theoremrsqrmo 11209* Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
 
Theoremrersqreu 11210* Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
 
Theoremresqrtcl 11211 Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
 
Theoremrersqrtthlem 11212 Lemma for resqrtth 11213. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (√‘𝐴)))
 
Theoremresqrtth 11213 Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
 
Theoremremsqsqrt 11214 Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴)
 
Theoremsqrtge0 11215 The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴))
 
Theoremsqrtgt0 11216 The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴))
 
Theoremsqrtmul 11217 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))
 
Theoremsqrtle 11218 Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))
 
Theoremsqrtlt 11219 Square root is strictly monotonic. Closed form of sqrtlti 11319. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremsqrt11ap 11220 Analogue to sqrt11 11221 but for apartness. (Contributed by Jim Kingdon, 11-Aug-2021.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) # (√‘𝐵) ↔ 𝐴 # 𝐵))
 
Theoremsqrt11 11221 The square root function is one-to-one. Also see sqrt11ap 11220 which would follow easily from this given excluded middle, but which is proved another way without it. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremsqrt00 11222 A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremrpsqrtcl 11223 The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.)
(𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+)
 
Theoremsqrtdiv 11224 Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
 
Theoremsqrtsq2 11225 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))
 
Theoremsqrtsq 11226 Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
 
Theoremsqrtmsq 11227 Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · 𝐴)) = 𝐴)
 
Theoremsqrt1 11228 The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.)
(√‘1) = 1
 
Theoremsqrt4 11229 The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.)
(√‘4) = 2
 
Theoremsqrt9 11230 The square root of 9 is 3. (Contributed by NM, 11-May-2004.)
(√‘9) = 3
 
Theoremsqrt2gt1lt2 11231 The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
(1 < (√‘2) ∧ (√‘2) < 2)
 
Theoremabsneg 11232 Absolute value of negative. (Contributed by NM, 27-Feb-2005.)
(𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
 
Theoremabscl 11233 Real closure of absolute value. (Contributed by NM, 3-Oct-1999.)
(𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
 
Theoremabscj 11234 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
(𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
 
Theoremabsvalsq 11235 Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
 
Theoremabsvalsq2 11236 Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremsqabsadd 11237 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
 
Theoremsqabssub 11238 Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
 
Theoremabsval2 11239 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.)
(𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
 
Theoremabs0 11240 The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.)
(abs‘0) = 0
 
Theoremabsi 11241 The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
(abs‘i) = 1
 
Theoremabsge0 11242 Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
 
Theoremabsrpclap 11243 The absolute value of a number apart from zero is a positive real. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ+)
 
Theoremabs00ap 11244 The absolute value of a number is apart from zero iff the number is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
 
Theoremabsext 11245 Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))
 
Theoremabs00 11246 The absolute value of a number is zero iff the number is zero. Also see abs00ap 11244 which is similar but for apartness. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremabs00ad 11247 A complex number is zero iff its absolute value is zero. Deduction form of abs00 11246. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremabs00bd 11248 If a complex number is zero, its absolute value is zero. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 = 0)       (𝜑 → (abs‘𝐴) = 0)
 
Theoremabsreimsq 11249 Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2)))
 
Theoremabsreim 11250 Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2))))
 
Theoremabsmul 11251 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
 
Theoremabsdivap 11252 Absolute value distributes over division. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
Theoremabsid 11253 A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
 
Theoremabs1 11254 The absolute value of 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
(abs‘1) = 1
 
Theoremabsnid 11255 A negative number is the negative of its own absolute value. (Contributed by NM, 27-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
 
Theoremleabs 11256 A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.)
(𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
 
Theoremqabsor 11257 The absolute value of a rational number is either that number or its negative. (Contributed by Jim Kingdon, 8-Nov-2021.)
(𝐴 ∈ ℚ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
 
Theoremqabsord 11258 The absolute value of a rational number is either that number or its negative. (Contributed by Jim Kingdon, 8-Nov-2021.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
 
Theoremabsre 11259 Absolute value of a real number. (Contributed by NM, 17-Mar-2005.)
(𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2)))
 
Theoremabsresq 11260 Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
 
Theoremabsexp 11261 Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
Theoremabsexpzap 11262 Absolute value of integer exponentiation. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
Theoremabssq 11263 Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2)))
 
Theoremsqabs 11264 The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵)))
 
Theoremabsrele 11265 The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.)
(𝐴 ∈ ℂ → (abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴))
 
Theoremabsimle 11266 The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴))
 
Theoremnn0abscl 11267 The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.)
(𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
 
Theoremzabscl 11268 The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.)
(𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ)
 
Theoremltabs 11269 A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)
 
Theoremabslt 11270 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))
 
Theoremabsle 11271 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
 
Theoremabssubap0 11272 If the absolute value of a complex number is less than a real, its difference from the real is apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵𝐴) # 0)
 
Theoremabssubne0 11273 If the absolute value of a complex number is less than a real, its difference from the real is nonzero. See also abssubap0 11272 which is the same with not equal changed to apart. (Contributed by NM, 2-Nov-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵𝐴) ≠ 0)
 
Theoremabsdiflt 11274 The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴𝐵)) < 𝐶 ↔ ((𝐵𝐶) < 𝐴𝐴 < (𝐵 + 𝐶))))
 
Theoremabsdifle 11275 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴𝐵)) ≤ 𝐶 ↔ ((𝐵𝐶) ≤ 𝐴𝐴 ≤ (𝐵 + 𝐶))))
 
Theoremelicc4abs 11276 Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶𝐴)) ≤ 𝐵))
 
Theoremlenegsq 11277 Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))
 
Theoremreleabs 11278 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
 
Theoremrecvalap 11279 Reciprocal expressed with a real denominator. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))
 
Theoremabsidm 11280 The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.)
(𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
 
Theoremabsgt0ap 11281 The absolute value of a number apart from zero is positive. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ 0 < (abs‘𝐴)))
 
Theoremnnabscl 11282 The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
 
Theoremabssub 11283 Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
 
Theoremabssubge0 11284 Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
 
Theoremabssuble0 11285 Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
 
Theoremabstri 11286 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs3dif 11287 Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
 
Theoremabs2dif 11288 Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs2dif2 11289 Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difabs 11290 Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
 
Theoremrecan 11291* Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
 
Theoremabsf 11292 Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.)
abs:ℂ⟶ℝ
 
Theoremabs3lem 11293 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷))
 
Theoremfzomaxdiflem 11294 Lemma for fzomaxdif 11295. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))
 
Theoremfzomaxdif 11295 A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))
 
Theoremcau3lem 11296* Lemma for cau3 11297. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
𝑍 ⊆ ℤ    &   (𝜏𝜓)    &   ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))    &   ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))    &   ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))    &   ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))    &   ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))       (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
 
Theoremcau3 11297* Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 11170 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
 
Theoremcau4 11298* Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)       (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
 
Theoremcaubnd2 11299* A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
 
Theoremamgm2 11300 Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >