HomeHome Intuitionistic Logic Explorer
Theorem List (p. 113 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11201-11300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempfx1 11201 The prefix of length one of a nonempty word expressed as a singleton word. (Contributed by AV, 15-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 prefix 1) = ⟨“(𝑊‘0)”⟩)
 
4.7.8  Subwords of subwords
 
Theoremswrdswrdlem 11202 Lemma for swrdswrd 11203. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
(((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
 
Theoremswrdswrd 11203 A subword of a subword is a subword. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))
 
Theorempfxswrd 11204 A prefix of a subword is a subword. (Contributed by AV, 2-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁𝑀)) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩)))
 
Theoremswrdpfx 11205 A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))
 
Theorempfxpfx 11206 A prefix of a prefix is a prefix. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))
 
Theorempfxpfxid 11207 A prefix of a prefix with the same length is the original prefix. In other words, the operation "prefix of length 𝑁 " is idempotent. (Contributed by AV, 5-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) prefix 𝑁) = (𝑊 prefix 𝑁))
 
4.7.9  Subwords and concatenations
 
Theorempfxcctswrd 11208 The concatenation of the prefix of a word and the rest of the word yields the word itself. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑀) ++ (𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) = 𝑊)
 
Theoremlenpfxcctswrd 11209 The length of the concatenation of the prefix of a word and the rest of the word is the length of the word. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 prefix 𝑀) ++ (𝑊 substr ⟨𝑀, (♯‘𝑊)⟩))) = (♯‘𝑊))
 
Theoremlenrevpfxcctswrd 11210 The length of the concatenation of the rest of a word and the prefix of the word is the length of the word. (Contributed by Alexander van der Vekens, 1-Apr-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 substr ⟨𝑀, (♯‘𝑊)⟩) ++ (𝑊 prefix 𝑀))) = (♯‘𝑊))
 
Theorempfxlswccat 11211 Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
 
Theoremccats1pfxeq 11212 The last symbol of a word concatenated with the word with the last symbol removed results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
 
Theoremccats1pfxeqrex 11213* There exists a symbol such that its concatenation after the prefix obtained by deleting the last symbol of a nonempty word results in the word itself. (Contributed by AV, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠𝑉 𝑈 = (𝑊 ++ ⟨“𝑠”⟩)))
 
Theoremccatopth 11214 An opth 4302-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
(((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremccatopth2 11215 An opth 4302-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
(((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremccatlcan 11216 Concatenation of words is left-cancellative. (Contributed by Mario Carneiro, 2-Oct-2015.)
((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐶 ++ 𝐴) = (𝐶 ++ 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremccatrcan 11217 Concatenation of words is right-cancellative. (Contributed by Mario Carneiro, 2-Oct-2015.)
((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremwrdeqs1cat 11218 Decompose a nonempty word by separating off the first symbol. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → 𝑊 = (⟨“(𝑊‘0)”⟩ ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)))
 
Theoremcats1un 11219 Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}))
 
Theoremwrdind 11220* Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))       (𝐴 ∈ Word 𝐵𝜏)
 
Theoremwrd2ind 11221* Perform induction over the structure of two words of the same length. (Contributed by AV, 23-Jan-2019.) (Proof shortened by AV, 12-Oct-2022.)
((𝑥 = ∅ ∧ 𝑤 = ∅) → (𝜑𝜓))    &   ((𝑥 = 𝑦𝑤 = 𝑢) → (𝜑𝜒))    &   ((𝑥 = (𝑦 ++ ⟨“𝑧”⟩) ∧ 𝑤 = (𝑢 ++ ⟨“𝑠”⟩)) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜌𝜏))    &   (𝑤 = 𝐵 → (𝜑𝜌))    &   𝜓    &   (((𝑦 ∈ Word 𝑋𝑧𝑋) ∧ (𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒𝜃))       ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝜏)
 
4.7.10  Subwords of concatenations
 
Theoremswrdccatfn 11222 The subword of a concatenation as function. (Contributed by Alexander van der Vekens, 27-May-2018.)
(((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
 
Theoremswrdccatin1 11223 The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
 
Theorempfxccatin12lem4 11224 Lemma 4 for pfxccatin12 11231. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.)
((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
 
Theorempfxccatin12lem2a 11225 Lemma for pfxccatin12lem2 11229. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
 
Theorempfxccatin12lem1 11226 Lemma 1 for pfxccatin12 11231. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
 
Theoremswrdccatin2 11227 The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
 
Theorempfxccatin12lem2c 11228 Lemma for pfxccatin12lem2 11229 and pfxccatin12lem3 11230. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
 
Theorempfxccatin12lem2 11229 Lemma 2 for pfxccatin12 11231. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
 
Theorempfxccatin12lem3 11230 Lemma 3 for pfxccatin12 11231. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))
 
Theorempfxccatin12 11231 The subword of a concatenation of two words within both of the concatenated words. (Contributed by Alexander van der Vekens, 5-Apr-2018.) (Revised by AV, 9-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
 
Theorempfxccat3 11232 The subword of a concatenation is either a subword of the first concatenated word or a subword of the second concatenated word or a concatenation of a suffix of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))
 
Theoremswrdccat 11233 The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩))))
 
Theorempfxccatpfx1 11234 A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
 
Theorempfxccatpfx2 11235 A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)    &   𝑀 = (♯‘𝐵)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
 
Theorempfxccat3a 11236 A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)    &   𝑀 = (♯‘𝐵)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
 
Theoremswrdccat3blem 11237 Lemma for swrdccat3b 11238. (Contributed by AV, 30-May-2018.)
𝐿 = (♯‘𝐴)       ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
 
Theoremswrdccat3b 11238 A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.) (Proof shortened by AV, 14-Oct-2022.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
 
Theorempfxccatid 11239 A prefix of a concatenation of length of the first concatenated word is the first word itself. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 10-May-2020.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (♯‘𝐴)) → ((𝐴 ++ 𝐵) prefix 𝑁) = 𝐴)
 
Theoremccats1pfxeqbi 11240 A word is a prefix of a word with length greater by 1 than the first word iff the second word is the first word concatenated with the last symbol of the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV, 10-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
 
Theoremswrdccatin1d 11241 The subword of a concatenation of two words within the first of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (0...𝑁))    &   (𝜑𝑁 ∈ (0...𝐿))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
 
Theoremswrdccatin2d 11242 The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (𝐿...𝑁))    &   (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
 
Theorempfxccatin12d 11243 The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (0...𝐿))    &   (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
 
Theoremreuccatpfxs1lem 11244* Lemma for reuccatpfxs1 11245. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
 
Theoremreuccatpfxs1 11245* There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
𝑣𝑋       ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
 
Theoremreuccatpfxs1v 11246* There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2022.) (Proof shortened by AV, 13-Oct-2022.)
((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
 
4.7.11  Longer string literals
 
Syntaxcs2 11247 Syntax for the length 2 word constructor.
class ⟨“𝐴𝐵”⟩
 
Syntaxcs3 11248 Syntax for the length 3 word constructor.
class ⟨“𝐴𝐵𝐶”⟩
 
Syntaxcs4 11249 Syntax for the length 4 word constructor.
class ⟨“𝐴𝐵𝐶𝐷”⟩
 
Syntaxcs5 11250 Syntax for the length 5 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸”⟩
 
Syntaxcs6 11251 Syntax for the length 6 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩
 
Syntaxcs7 11252 Syntax for the length 7 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩
 
Syntaxcs8 11253 Syntax for the length 8 word constructor.
class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩
 
Definitiondf-s2 11254 Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
 
Definitiondf-s3 11255 Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
 
Definitiondf-s4 11256 Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
 
Definitiondf-s5 11257 Define the length 5 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩)
 
Definitiondf-s6 11258 Define the length 6 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
 
Definitiondf-s7 11259 Define the length 7 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ++ ⟨“𝐺”⟩)
 
Definitiondf-s8 11260 Define the length 8 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩)
 
Theoremcats1cld 11261 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word 𝐴)    &   (𝜑𝑋𝐴)       (𝜑𝑇 ∈ Word 𝐴)
 
Theoremcats1fvn 11262 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   𝑆 ∈ Word V    &   (♯‘𝑆) = 𝑀       (𝑋𝑉 → (𝑇𝑀) = 𝑋)
 
Theoremcats1fvnd 11263 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑉)    &   (𝜑 → (♯‘𝑆) = 𝑀)       (𝜑 → (𝑇𝑀) = 𝑋)
 
Theoremcats1fvd 11264 A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑 → (♯‘𝑆) = 𝑀)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑊)    &   (𝜑 → (𝑆𝑁) = 𝑌)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝑇𝑁) = 𝑌)
 
Theoremcats1lend 11265 The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑊)    &   (♯‘𝑆) = 𝑀    &   (𝑀 + 1) = 𝑁       (𝜑 → (♯‘𝑇) = 𝑁)
 
Theoremcats1catd 11266 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝐴 ∈ Word V)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑊)    &   (𝜑𝐶 = (𝐵 ++ ⟨“𝑋”⟩))    &   (𝜑𝐵 = (𝐴 ++ 𝑆))       (𝜑𝐶 = (𝐴 ++ 𝑇))
 
Theoremcats2catd 11267 Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon, 19-Jan-2026.)
(𝜑𝐵 ∈ Word V)    &   (𝜑𝐷 ∈ Word V)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑊)    &   (𝜑𝐴 = (𝐵 ++ ⟨“𝑋”⟩))    &   (𝜑𝐶 = (⟨“𝑌”⟩ ++ 𝐷))       (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ ⟨“𝑋𝑌”⟩) ++ 𝐷))
 
Theorems2eqd 11268 Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)       (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
 
Theorems3eqd 11269 Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
 
Theorems4eqd 11270 Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)
 
Theorems5eqd 11271 Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)
 
Theorems6eqd 11272 Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)    &   (𝜑𝐹 = 𝑆)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩)
 
Theorems7eqd 11273 Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)    &   (𝜑𝐹 = 𝑆)    &   (𝜑𝐺 = 𝑇)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩)
 
Theorems8eqd 11274 Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)    &   (𝜑𝐹 = 𝑆)    &   (𝜑𝐺 = 𝑇)    &   (𝜑𝐻 = 𝑈)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩)
 
Theorems3eq2 11275 Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.)
(𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)
 
Theorems2cld 11276 A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋)
 
Theorems3cld 11277 A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑋)
 
Theorems4cld 11278 A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word 𝑋)
 
Theorems5cld 11279 A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ∈ Word 𝑋)
 
Theorems6cld 11280 A length 6 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)    &   (𝜑𝐹𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ∈ Word 𝑋)
 
Theorems7cld 11281 A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)    &   (𝜑𝐹𝑋)    &   (𝜑𝐺𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word 𝑋)
 
Theorems8cld 11282 A length 8 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)    &   (𝜑𝐹𝑋)    &   (𝜑𝐺𝑋)    &   (𝜑𝐻𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ ∈ Word 𝑋)
 
Theorems2cl 11283 A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑋𝐵𝑋) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋)
 
Theorems3cl 11284 A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑋𝐵𝑋𝐶𝑋) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑋)
 
Theorems2fv0g 11285 Extract the first symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑉𝐵𝑊) → (⟨“𝐴𝐵”⟩‘0) = 𝐴)
 
Theorems2fv1g 11286 Extract the second symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑉𝐵𝑊) → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
 
Theorems2leng 11287 The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑉𝐵𝑊) → (♯‘⟨“𝐴𝐵”⟩) = 2)
 
Theorems2dmg 11288 The domain of a doubleton word is an unordered pair. (Contributed by AV, 9-Jan-2020.)
((𝐴𝑉𝐵𝑊) → dom ⟨“𝐴𝐵”⟩ = {0, 1})
 
Theorems3fv0g 11289 Extract the first symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
 
Theorems3fv1g 11290 Extract the second symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
 
4.8  Elementary real and complex functions
 
4.8.1  The "shift" operation
 
Syntaxcshi 11291 Extend class notation with function shifter.
class shift
 
Definitiondf-shft 11292* Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ) and produces a new function on . See shftval 11302 for its value. (Contributed by NM, 20-Jul-2005.)
shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ℂ ∧ (𝑦𝑥)𝑓𝑧)})
 
Theoremshftlem 11293* Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
 
Theoremshftuz 11294* A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = (ℤ‘(𝐵 + 𝐴)))
 
Theoremshftfvalg 11295* The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
 
Theoremovshftex 11296 Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
 
Theoremshftfibg 11297 Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon, 15-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
 
Theoremshftfval 11298* The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
 
Theoremshftdm 11299* Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
 
Theoremshftfib 11300 Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >