| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-cring | GIF version | ||
| Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| df-cring | ⊢ CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ccrg 13553 | . 2 class CRing | |
| 2 | vf | . . . . . 6 setvar 𝑓 | |
| 3 | 2 | cv 1363 | . . . . 5 class 𝑓 | 
| 4 | cmgp 13476 | . . . . 5 class mulGrp | |
| 5 | 3, 4 | cfv 5258 | . . . 4 class (mulGrp‘𝑓) | 
| 6 | ccmn 13414 | . . . 4 class CMnd | |
| 7 | 5, 6 | wcel 2167 | . . 3 wff (mulGrp‘𝑓) ∈ CMnd | 
| 8 | crg 13552 | . . 3 class Ring | |
| 9 | 7, 2, 8 | crab 2479 | . 2 class {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} | 
| 10 | 1, 9 | wceq 1364 | 1 wff CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} | 
| Colors of variables: wff set class | 
| This definition is referenced by: iscrng 13559 | 
| Copyright terms: Public domain | W3C validator |