ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng GIF version

Theorem iscrng 13499
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscrng (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 ringmgp.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2244 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2262 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-cring 13495 . 2 CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 2919 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2164  cfv 5254  CMndccmn 13354  mulGrpcmgp 13416  Ringcrg 13492  CRingccrg 13493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-cring 13495
This theorem is referenced by:  crngmgp  13500  crngring  13504  iscrng2  13511  crngpropd  13535  iscrngd  13538  subrgcrng  13721
  Copyright terms: Public domain W3C validator