ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng GIF version

Theorem iscrng 13559
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscrng (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 ringmgp.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2247 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2265 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-cring 13555 . 2 CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 2923 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  cfv 5258  CMndccmn 13414  mulGrpcmgp 13476  Ringcrg 13552  CRingccrg 13553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-cring 13555
This theorem is referenced by:  crngmgp  13560  crngring  13564  iscrng2  13571  crngpropd  13595  iscrngd  13598  subrgcrng  13781
  Copyright terms: Public domain W3C validator