| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscrng | GIF version | ||
| Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| iscrng | ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 | . . . 4 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 2 | ringmgp.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2247 | . . 3 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺) |
| 4 | 3 | eleq1d 2265 | . 2 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd)) |
| 5 | df-cring 13555 | . 2 ⊢ CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd} | |
| 6 | 4, 5 | elrab2 2923 | 1 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 CMndccmn 13414 mulGrpcmgp 13476 Ringcrg 13552 CRingccrg 13553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-cring 13555 |
| This theorem is referenced by: crngmgp 13560 crngring 13564 iscrng2 13571 crngpropd 13595 iscrngd 13598 subrgcrng 13781 |
| Copyright terms: Public domain | W3C validator |