Theorem List for Intuitionistic Logic Explorer - 13101-13200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | basmexd 13101 |
A structure whose base is inhabited is a set. (Contributed by Jim
Kingdon, 28-Nov-2024.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ V) |
| |
| Theorem | basm 13102* |
A structure whose base is inhabited is inhabited. (Contributed by Jim
Kingdon, 14-Jun-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝐺) |
| |
| Theorem | relelbasov 13103 |
Utility theorem: reverse closure for any structure defined as a
two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
|
| ⊢ Rel dom 𝑂
& ⊢ Rel 𝑂
& ⊢ 𝑆 = (𝑋𝑂𝑌)
& ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| |
| Theorem | reldmress 13104 |
The structure restriction is a proper operator, so it can be used with
ovprc1 6044. (Contributed by Stefan O'Rear,
29-Nov-2014.)
|
| ⊢ Rel dom ↾s |
| |
| Theorem | ressvalsets 13105 |
Value of structure restriction. (Contributed by Jim Kingdon,
16-Jan-2025.)
|
| ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| |
| Theorem | ressex 13106 |
Existence of structure restriction. (Contributed by Jim Kingdon,
16-Jan-2025.)
|
| ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) ∈ V) |
| |
| Theorem | ressval2 13107 |
Value of nontrivial structure restriction. (Contributed by Stefan
O'Rear, 29-Nov-2014.)
|
| ⊢ 𝑅 = (𝑊 ↾s 𝐴)
& ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
| |
| Theorem | ressbasd 13108 |
Base set of a structure restriction. (Contributed by Stefan O'Rear,
26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
|
| ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| |
| Theorem | ressbas2d 13109 |
Base set of a structure restriction. (Contributed by Mario Carneiro,
2-Dec-2014.)
|
| ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| |
| Theorem | ressbasssd 13110 |
The base set of a restriction is a subset of the base set of the
original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Base‘𝑅) ⊆ 𝐵) |
| |
| Theorem | ressbasid 13111 |
The trivial structure restriction leaves the base set unchanged.
(Contributed by Jim Kingdon, 29-Apr-2025.)
|
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (Base‘(𝑊 ↾s 𝐵)) = 𝐵) |
| |
| Theorem | strressid 13112 |
Behavior of trivial restriction. (Contributed by Stefan O'Rear,
29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) & ⊢ (𝜑 → Fun 𝑊)
& ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊)
⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) |
| |
| Theorem | ressval3d 13113 |
Value of structure restriction, deduction version. (Contributed by AV,
14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
|
| ⊢ 𝑅 = (𝑆 ↾s 𝐴)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → Fun 𝑆)
& ⊢ (𝜑 → 𝐸 ∈ dom 𝑆)
& ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
| |
| Theorem | resseqnbasd 13114 |
The components of an extensible structure except the base set remain
unchanged on a structure restriction. (Contributed by Mario Carneiro,
26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV,
19-Oct-2024.)
|
| ⊢ 𝑅 = (𝑊 ↾s 𝐴)
& ⊢ 𝐶 = (𝐸‘𝑊)
& ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠
(Base‘ndx)
& ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
| |
| Theorem | ressinbasd 13115 |
Restriction only cares about the part of the second set which intersects
the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
| |
| Theorem | ressressg 13116 |
Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.)
(Proof shortened by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
| |
| Theorem | ressabsg 13117 |
Restriction absorption law. (Contributed by Mario Carneiro,
12-Jun-2015.)
|
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
| |
| 6.1.2 Slot definitions
|
| |
| Syntax | cplusg 13118 |
Extend class notation with group (addition) operation.
|
| class +g |
| |
| Syntax | cmulr 13119 |
Extend class notation with ring multiplication.
|
| class .r |
| |
| Syntax | cstv 13120 |
Extend class notation with involution.
|
| class *𝑟 |
| |
| Syntax | csca 13121 |
Extend class notation with scalar field.
|
| class Scalar |
| |
| Syntax | cvsca 13122 |
Extend class notation with scalar product.
|
| class
·𝑠 |
| |
| Syntax | cip 13123 |
Extend class notation with Hermitian form (inner product).
|
| class
·𝑖 |
| |
| Syntax | cts 13124 |
Extend class notation with the topology component of a topological
space.
|
| class TopSet |
| |
| Syntax | cple 13125 |
Extend class notation with "less than or equal to" for posets.
|
| class le |
| |
| Syntax | coc 13126 |
Extend class notation with the class of orthocomplementation
extractors.
|
| class oc |
| |
| Syntax | cds 13127 |
Extend class notation with the metric space distance function.
|
| class dist |
| |
| Syntax | cunif 13128 |
Extend class notation with the uniform structure.
|
| class UnifSet |
| |
| Syntax | chom 13129 |
Extend class notation with the hom-set structure.
|
| class Hom |
| |
| Syntax | cco 13130 |
Extend class notation with the composition operation.
|
| class comp |
| |
| Definition | df-plusg 13131 |
Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
| ⊢ +g = Slot 2 |
| |
| Definition | df-mulr 13132 |
Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
| ⊢ .r = Slot 3 |
| |
| Definition | df-starv 13133 |
Define the involution function of a *-ring. (Contributed by NM,
4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ *𝑟 = Slot
4 |
| |
| Definition | df-sca 13134 |
Define scalar field component of a vector space 𝑣. (Contributed by
NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ Scalar = Slot 5 |
| |
| Definition | df-vsca 13135 |
Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
| ⊢ ·𝑠 = Slot
6 |
| |
| Definition | df-ip 13136 |
Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ ·𝑖 = Slot
8 |
| |
| Definition | df-tset 13137 |
Define the topology component of a topological space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ TopSet = Slot 9 |
| |
| Definition | df-ple 13138 |
Define "less than or equal to" ordering extractor for posets and
related
structures. We use ;10 for the index to avoid conflict with 1
through 9 used for other purposes. (Contributed
by NM, 4-Sep-2011.)
(Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ le = Slot ;10 |
| |
| Definition | df-ocomp 13139 |
Define the orthocomplementation extractor for posets and related
structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ oc = Slot ;11 |
| |
| Definition | df-ds 13140 |
Define the distance function component of a metric space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ dist = Slot ;12 |
| |
| Definition | df-unif 13141 |
Define the uniform structure component of a uniform space. (Contributed
by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ UnifSet = Slot ;13 |
| |
| Definition | df-hom 13142 |
Define the hom-set component of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
| ⊢ Hom = Slot ;14 |
| |
| Definition | df-cco 13143 |
Define the composition operation of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
| ⊢ comp = Slot ;15 |
| |
| Theorem | strleund 13144 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |
| |
| Theorem | strleun 13145 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
| ⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 |
| |
| Theorem | strext 13146 |
Extending the upper range of a structure. This works because when we
say that a structure has components in 𝐴...𝐶 we are not saying
that every slot in that range is present, just that all the slots that
are present are within that range. (Contributed by Jim Kingdon,
26-Feb-2025.)
|
| ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵))
⇒ ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
| |
| Theorem | strle1g 13147 |
Make a structure from a singleton. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| |
| Theorem | strle2g 13148 |
Make a structure from a pair. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
| |
| Theorem | strle3g 13149 |
Make a structure from a triple. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽
& ⊢ 𝐽 < 𝐾
& ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉) |
| |
| Theorem | plusgndx 13150 |
Index value of the df-plusg 13131 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (+g‘ndx) =
2 |
| |
| Theorem | plusgid 13151 |
Utility theorem: index-independent form of df-plusg 13131. (Contributed by
NM, 20-Oct-2012.)
|
| ⊢ +g = Slot
(+g‘ndx) |
| |
| Theorem | plusgndxnn 13152 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 17-Oct-2024.)
|
| ⊢ (+g‘ndx) ∈
ℕ |
| |
| Theorem | plusgslid 13153 |
Slot property of +g. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (+g = Slot
(+g‘ndx) ∧ (+g‘ndx) ∈
ℕ) |
| |
| Theorem | basendxltplusgndx 13154 |
The index of the slot for the base set is less then the index of the slot
for the group operation in an extensible structure. (Contributed by AV,
17-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(+g‘ndx) |
| |
| Theorem | opelstrsl 13155 |
The slot of a structure which contains an ordered pair for that slot.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| |
| Theorem | opelstrbas 13156 |
The base set of a structure with a base set. (Contributed by AV,
10-Nov-2021.)
|
| ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
| |
| Theorem | 1strstrg 13157 |
A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
(Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) |
| |
| Theorem | 1strbas 13158 |
The base set of a constructed one-slot structure. (Contributed by AV,
27-Mar-2020.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2strstrndx 13159 |
A constructed two-slot structure not depending on the hard-coded index
value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.)
(Revised by Jim Kingdon, 14-Dec-2025.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
| |
| Theorem | 2strstrg 13160 |
A constructed two-slot structure. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) Use 2strstrndx 13159
instead. (New usage is discouraged.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) |
| |
| Theorem | 2strbasg 13161 |
The base set of a constructed two-slot structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2stropg 13162 |
The other slot of a constructed two-slot structure. (Contributed by
Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| |
| Theorem | 2strstr1g 13163 |
A constructed two-slot structure. Version of 2strstrg 13160 not depending
on the hard-coded index value of the base set. (Contributed by AV,
22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
| |
| Theorem | 2strbas1g 13164 |
The base set of a constructed two-slot structure. Version of 2strbasg 13161
not depending on the hard-coded index value of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2strop1g 13165 |
The other slot of a constructed two-slot structure. Version of
2stropg 13162 not depending on the hard-coded index value
of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| |
| Theorem | basendxnplusgndx 13166 |
The slot for the base set is not the slot for the group operation in an
extensible structure. (Contributed by AV, 14-Nov-2021.)
|
| ⊢ (Base‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | grpstrg 13167 |
A constructed group is a structure on 1...2.
(Contributed by
Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) |
| |
| Theorem | grpbaseg 13168 |
The base set of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | grpplusgg 13169 |
The operation of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + =
(+g‘𝐺)) |
| |
| Theorem | ressplusgd 13170 |
+g is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → + =
(+g‘𝐻)) |
| |
| Theorem | mulrndx 13171 |
Index value of the df-mulr 13132 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (.r‘ndx) =
3 |
| |
| Theorem | mulridx 13172 |
Utility theorem: index-independent form of df-mulr 13132. (Contributed by
Mario Carneiro, 8-Jun-2013.)
|
| ⊢ .r = Slot
(.r‘ndx) |
| |
| Theorem | mulrslid 13173 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
| |
| Theorem | plusgndxnmulrndx 13174 |
The slot for the group (addition) operation is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 16-Feb-2020.)
|
| ⊢ (+g‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | basendxnmulrndx 13175 |
The slot for the base set is not the slot for the ring (multiplication)
operation in an extensible structure. (Contributed by AV,
16-Feb-2020.)
|
| ⊢ (Base‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | rngstrg 13176 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
| |
| Theorem | rngbaseg 13177 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | rngplusgg 13178 |
The additive operation of a constructed ring. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + =
(+g‘𝑅)) |
| |
| Theorem | rngmulrg 13179 |
The multiplicative operation of a constructed ring. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · =
(.r‘𝑅)) |
| |
| Theorem | starvndx 13180 |
Index value of the df-starv 13133 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (*𝑟‘ndx) =
4 |
| |
| Theorem | starvid 13181 |
Utility theorem: index-independent form of df-starv 13133. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ *𝑟 = Slot
(*𝑟‘ndx) |
| |
| Theorem | starvslid 13182 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
| ⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
| |
| Theorem | starvndxnbasendx 13183 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | starvndxnplusgndx 13184 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | starvndxnmulrndx 13185 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | ressmulrg 13186 |
.r is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ 𝑆 = (𝑅 ↾s 𝐴)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · =
(.r‘𝑆)) |
| |
| Theorem | srngstrd 13187 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
| |
| Theorem | srngbased 13188 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | srngplusgd 13189 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
| |
| Theorem | srngmulrd 13190 |
The multiplication operation of a constructed star ring. (Contributed
by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → · =
(.r‘𝑅)) |
| |
| Theorem | srnginvld 13191 |
The involution function of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
| |
| Theorem | scandx 13192 |
Index value of the df-sca 13134 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (Scalar‘ndx) = 5 |
| |
| Theorem | scaid 13193 |
Utility theorem: index-independent form of scalar df-sca 13134. (Contributed
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ Scalar = Slot
(Scalar‘ndx) |
| |
| Theorem | scaslid 13194 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
| |
| Theorem | scandxnbasendx 13195 |
The slot for the scalar is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | scandxnplusgndx 13196 |
The slot for the scalar field is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | scandxnmulrndx 13197 |
The slot for the scalar field is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | vscandx 13198 |
Index value of the df-vsca 13135 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ ( ·𝑠
‘ndx) = 6 |
| |
| Theorem | vscaid 13199 |
Utility theorem: index-independent form of scalar product df-vsca 13135.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ ·𝑠 = Slot
( ·𝑠 ‘ndx) |
| |
| Theorem | vscandxnbasendx 13200 |
The slot for the scalar product is not the slot for the base set in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Base‘ndx) |