HomeHome Intuitionistic Logic Explorer
Theorem List (p. 132 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiscmnd 13101* Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΊ))    &   (πœ‘ β†’ + = (+gβ€˜πΊ))    &   (πœ‘ β†’ 𝐺 ∈ Mnd)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))    β‡’   (πœ‘ β†’ 𝐺 ∈ CMnd)
 
Theoremisabld 13102* Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΊ))    &   (πœ‘ β†’ + = (+gβ€˜πΊ))    &   (πœ‘ β†’ 𝐺 ∈ Grp)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))    β‡’   (πœ‘ β†’ 𝐺 ∈ Abel)
 
Theoremisabli 13103* Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
𝐺 ∈ Grp    &   π΅ = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))    β‡’   πΊ ∈ Abel
 
Theoremcmnmnd 13104 A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝐺 ∈ CMnd β†’ 𝐺 ∈ Mnd)
 
Theoremcmncom 13105 A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
 
Theoremablcom 13106 An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
 
Theoremcmn32 13107 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 + π‘Œ) + 𝑍) = ((𝑋 + 𝑍) + π‘Œ))
 
Theoremcmn4 13108 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 + π‘Œ) + (𝑍 + π‘Š)) = ((𝑋 + 𝑍) + (π‘Œ + π‘Š)))
 
Theoremcmn12 13109 Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 + (π‘Œ + 𝑍)) = (π‘Œ + (𝑋 + 𝑍)))
 
Theoremabl32 13110 Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑋 + π‘Œ) + 𝑍) = ((𝑋 + 𝑍) + π‘Œ))
 
Theoremcmnmndd 13111 A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
(πœ‘ β†’ 𝐺 ∈ CMnd)    β‡’   (πœ‘ β†’ 𝐺 ∈ Mnd)
 
Theoremrinvmod 13112* Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6068. (Contributed by AV, 31-Dec-2023.)
𝐡 = (Baseβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ CMnd)    &   (πœ‘ β†’ 𝐴 ∈ 𝐡)    β‡’   (πœ‘ β†’ βˆƒ*𝑀 ∈ 𝐡 (𝐴 + 𝑀) = 0 )
 
Theoremablinvadd 13113 The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   π‘ = (invgβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (π‘β€˜(𝑋 + π‘Œ)) = ((π‘β€˜π‘‹) + (π‘β€˜π‘Œ)))
 
Theoremablsub2inv 13114 Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
𝐡 = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   π‘ = (invgβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ ((π‘β€˜π‘‹) βˆ’ (π‘β€˜π‘Œ)) = (π‘Œ βˆ’ 𝑋))
 
Theoremablsubadd 13115 Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 βˆ’ π‘Œ) = 𝑍 ↔ (π‘Œ + 𝑍) = 𝑋))
 
Theoremablsub4 13116 Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 + π‘Œ) βˆ’ (𝑍 + π‘Š)) = ((𝑋 βˆ’ 𝑍) + (π‘Œ βˆ’ π‘Š)))
 
Theoremabladdsub4 13117 Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 + π‘Œ) = (𝑍 + π‘Š) ↔ (𝑋 βˆ’ 𝑍) = (π‘Š βˆ’ π‘Œ)))
 
Theoremabladdsub 13118 Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 + π‘Œ) βˆ’ 𝑍) = ((𝑋 βˆ’ 𝑍) + π‘Œ))
 
Theoremablpncan2 13119 Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋 + π‘Œ) βˆ’ 𝑋) = π‘Œ)
 
Theoremablpncan3 13120 A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋 + (π‘Œ βˆ’ 𝑋)) = π‘Œ)
 
Theoremablsubsub 13121 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 βˆ’ (π‘Œ βˆ’ 𝑍)) = ((𝑋 βˆ’ π‘Œ) + 𝑍))
 
Theoremablsubsub4 13122 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑋 βˆ’ π‘Œ) βˆ’ 𝑍) = (𝑋 βˆ’ (π‘Œ + 𝑍)))
 
Theoremablpnpcan 13123 Cancellation law for mixed addition and subtraction. (pnpcan 8196 analog.) (Contributed by NM, 29-May-2015.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑋 + π‘Œ) βˆ’ (𝑋 + 𝑍)) = (π‘Œ βˆ’ 𝑍))
 
Theoremablnncan 13124 Cancellation law for group subtraction. (nncan 8186 analog.) (Contributed by NM, 7-Apr-2015.)
𝐡 = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 βˆ’ (𝑋 βˆ’ π‘Œ)) = π‘Œ)
 
Theoremablsub32 13125 Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
𝐡 = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑋 βˆ’ π‘Œ) βˆ’ 𝑍) = ((𝑋 βˆ’ 𝑍) βˆ’ π‘Œ))
 
Theoremablnnncan 13126 Cancellation law for group subtraction. (nnncan 8192 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
𝐡 = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑋 βˆ’ (π‘Œ βˆ’ 𝑍)) βˆ’ 𝑍) = (𝑋 βˆ’ π‘Œ))
 
Theoremablnnncan1 13127 Cancellation law for group subtraction. (nnncan1 8193 analog.) (Contributed by NM, 7-Apr-2015.)
𝐡 = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Abel)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑋 βˆ’ π‘Œ) βˆ’ (𝑋 βˆ’ 𝑍)) = (𝑍 βˆ’ π‘Œ))
 
Theoremablsubsub23 13128 Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉)) β†’ ((𝐴 βˆ’ 𝐡) = 𝐢 ↔ (𝐴 βˆ’ 𝐢) = 𝐡))
 
Theoremsubcmnd 13129 A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
(πœ‘ β†’ 𝐻 = (𝐺 β†Ύs 𝑆))    &   (πœ‘ β†’ 𝐺 ∈ CMnd)    &   (πœ‘ β†’ 𝐻 ∈ Mnd)    &   (πœ‘ β†’ 𝑆 ∈ 𝑉)    β‡’   (πœ‘ β†’ 𝐻 ∈ CMnd)
 
7.3  Rings
 
7.3.1  Multiplicative Group
 
Syntaxcmgp 13130 Multiplicative group.
class mulGrp
 
Definitiondf-mgp 13131 Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" or "the multiplicative identity" in terms of the identity of a monoid (df-ur 13143). (Contributed by Mario Carneiro, 21-Dec-2014.)
mulGrp = (𝑀 ∈ V ↦ (𝑀 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘€)⟩))
 
Theoremfnmgp 13132 The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
mulGrp Fn V
 
Theoremmgpvalg 13133 Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrpβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 𝑀 = (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩))
 
Theoremmgpplusgg 13134 Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrpβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ Β· = (+gβ€˜π‘€))
 
Theoremmgpex 13135 Existence of the multiplication group. If 𝑅 is known to be a semiring, see srgmgp 13151. (Contributed by Jim Kingdon, 10-Jan-2025.)
𝑀 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 𝑀 ∈ V)
 
Theoremmgpbasg 13136 Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrpβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 𝐡 = (Baseβ€˜π‘€))
 
Theoremmgpscag 13137 The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
𝑀 = (mulGrpβ€˜π‘…)    &   π‘† = (Scalarβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 𝑆 = (Scalarβ€˜π‘€))
 
Theoremmgptsetg 13138 Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ (TopSetβ€˜π‘…) = (TopSetβ€˜π‘€))
 
Theoremmgptopng 13139 Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrpβ€˜π‘…)    &   π½ = (TopOpenβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 𝐽 = (TopOpenβ€˜π‘€))
 
Theoremmgpdsg 13140 Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrpβ€˜π‘…)    &   π΅ = (distβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 𝐡 = (distβ€˜π‘€))
 
Theoremmgpress 13141 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π‘€ = (mulGrpβ€˜π‘…)    β‡’   ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜π‘†))
 
7.3.2  Ring unity (multiplicative identity)

In Wikipedia "Identity element", see https://en.wikipedia.org/wiki/Identity_element (18-Jan-2025): "... an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). ... The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit."

Calling the multiplicative identity of a ring a unity is taken from the definition of a ring with unity in section 17.3 of [BeauregardFraleigh] p. 135, "A ring ( R , + , . ) is a ring with unity if R is not the zero ring and ( R , . ) is a monoid. In this case, the identity element of ( R , . ) is denoted by 1 and is called the unity of R." This definition of a "ring with unity" corresponds to our definition of a unital ring (see df-ring 13181).

Some authors call the multiplicative identity "unit" or "unit element" (for example in section I, 2.2 of [BourbakiAlg1] p. 14, definition in section 1.3 of [Hall] p. 4, or in section I, 1 of [Lang] p. 3), whereas other authors use the term "unit" for an element having a multiplicative inverse (for example in section 17.3 of [BeauregardFraleigh] p. 135, in definition in [Roman] p. 26, or even in section II, 1 of [Lang] p. 84). Sometimes, the multiplicative identity is simply called "one" (see, for example, chapter 8 in [Schechter] p. 180).

To avoid this ambiguity of the term "unit", also mentioned in Wikipedia, we call the multiplicative identity of a structure with a multiplication (usually a ring) a "ring unity", or straightly "multiplicative identity".

The term "unit" will be used for an element having a multiplicative inverse (see https://us.metamath.org/mpeuni/df-unit.html 13181 in set.mm), and we have "the ring unity is a unit", see https://us.metamath.org/mpeuni/1unit.html 13181.

 
Syntaxcur 13142 Extend class notation with ring unity.
class 1r
 
Definitiondf-ur 13143 Define the multiplicative identity, i.e., the monoid identity (df-0g 12707) of the multiplicative monoid (df-mgp 13131) of a ring-like structure. This multiplicative identity is also called "ring unity" or "unity element".

This definition works by transferring the multiplicative operation from the .r slot to the +g slot and then looking at the element which is then the 0g element, that is an identity with respect to the operation which started out in the .r slot.

See also dfur2g 13145, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)

1r = (0g ∘ mulGrp)
 
Theoremringidvalg 13144 The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐺 = (mulGrpβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 1 = (0gβ€˜πΊ))
 
Theoremdfur2g 13145* The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ 𝑉 β†’ 1 = (℩𝑒(𝑒 ∈ 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 ((𝑒 Β· π‘₯) = π‘₯ ∧ (π‘₯ Β· 𝑒) = π‘₯))))
 
7.3.3  Semirings
 
Syntaxcsrg 13146 Extend class notation with the class of all semirings.
class SRing
 
Definitiondf-srg 13147* Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
SRing = {𝑓 ∈ CMnd ∣ ((mulGrpβ€˜π‘“) ∈ Mnd ∧ [(Baseβ€˜π‘“) / π‘Ÿ][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑][(0gβ€˜π‘“) / 𝑛]βˆ€π‘₯ ∈ π‘Ÿ (βˆ€π‘¦ ∈ π‘Ÿ βˆ€π‘§ ∈ π‘Ÿ ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ∧ ((𝑛𝑑π‘₯) = 𝑛 ∧ (π‘₯𝑑𝑛) = 𝑛)))}
 
Theoremissrg 13148* The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐡 = (Baseβ€˜π‘…)    &   πΊ = (mulGrpβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧))) ∧ (( 0 Β· π‘₯) = 0 ∧ (π‘₯ Β· 0 ) = 0 ))))
 
Theoremsrgcmn 13149 A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing β†’ 𝑅 ∈ CMnd)
 
Theoremsrgmnd 13150 A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing β†’ 𝑅 ∈ Mnd)
 
Theoremsrgmgp 13151 A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐺 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ SRing β†’ 𝐺 ∈ Mnd)
 
Theoremsrgdilem 13152 Lemma for srgdi 13157 and srgdir 13158. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 Β· (π‘Œ + 𝑍)) = ((𝑋 Β· π‘Œ) + (𝑋 Β· 𝑍)) ∧ ((𝑋 + π‘Œ) Β· 𝑍) = ((𝑋 Β· 𝑍) + (π‘Œ Β· 𝑍))))
 
Theoremsrgcl 13153 Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 Β· π‘Œ) ∈ 𝐡)
 
Theoremsrgass 13154 Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 Β· π‘Œ) Β· 𝑍) = (𝑋 Β· (π‘Œ Β· 𝑍)))
 
Theoremsrgideu 13155* The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ SRing β†’ βˆƒ!𝑒 ∈ 𝐡 βˆ€π‘₯ ∈ 𝐡 ((𝑒 Β· π‘₯) = π‘₯ ∧ (π‘₯ Β· 𝑒) = π‘₯))
 
Theoremsrgfcl 13156 Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ Β· Fn (𝐡 Γ— 𝐡)) β†’ Β· :(𝐡 Γ— 𝐡)⟢𝐡)
 
Theoremsrgdi 13157 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 Β· (π‘Œ + 𝑍)) = ((𝑋 Β· π‘Œ) + (𝑋 Β· 𝑍)))
 
Theoremsrgdir 13158 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 + π‘Œ) Β· 𝑍) = ((𝑋 Β· 𝑍) + (π‘Œ Β· 𝑍)))
 
Theoremsrgidcl 13159 The unity element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ SRing β†’ 1 ∈ 𝐡)
 
Theoremsrg0cl 13160 The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ SRing β†’ 0 ∈ 𝐡)
 
Theoremsrgidmlem 13161 Lemma for srglidm 13162 and srgridm 13163. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡) β†’ (( 1 Β· 𝑋) = 𝑋 ∧ (𝑋 Β· 1 ) = 𝑋))
 
Theoremsrglidm 13162 The unity element of a semiring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡) β†’ ( 1 Β· 𝑋) = 𝑋)
 
Theoremsrgridm 13163 The unity element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 Β· 1 ) = 𝑋)
 
Theoremissrgid 13164* Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ SRing β†’ ((𝐼 ∈ 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 ((𝐼 Β· π‘₯) = π‘₯ ∧ (π‘₯ Β· 𝐼) = π‘₯)) ↔ 1 = 𝐼))
 
Theoremsrgacl 13165 Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 + π‘Œ) ∈ 𝐡)
 
Theoremsrgcom 13166 Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
 
Theoremsrgrz 13167 The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 Β· 0 ) = 0 )
 
Theoremsrglz 13168 The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡) β†’ ( 0 Β· 𝑋) = 0 )
 
Theoremsrgisid 13169* In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ SRing)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (𝑍 Β· π‘₯) = 𝑍)    β‡’   (πœ‘ β†’ 𝑍 = 0 )
 
Theoremsrg1zr 13170 The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    βˆ— = (.rβ€˜π‘…)    β‡’   (((𝑅 ∈ SRing ∧ + Fn (𝐡 Γ— 𝐡) ∧ βˆ— Fn (𝐡 Γ— 𝐡)) ∧ 𝑍 ∈ 𝐡) β†’ (𝐡 = {𝑍} ↔ ( + = {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©} ∧ βˆ— = {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©})))
 
Theoremsrgen1zr 13171 The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    βˆ— = (.rβ€˜π‘…)    &   π‘ = (0gβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ + Fn (𝐡 Γ— 𝐡) ∧ βˆ— Fn (𝐡 Γ— 𝐡)) β†’ (𝐡 β‰ˆ 1o ↔ ( + = {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©} ∧ βˆ— = {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©})))
 
Theoremsrgmulgass 13172 An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.gβ€˜π‘…)    &    Γ— = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ (𝑁 ∈ β„•0 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((𝑁 Β· 𝑋) Γ— π‘Œ) = (𝑁 Β· (𝑋 Γ— π‘Œ)))
 
Theoremsrgpcomp 13173 If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Baseβ€˜π‘…)    &    Γ— = (.rβ€˜π‘…)    &   πΊ = (mulGrpβ€˜π‘…)    &    ↑ = (.gβ€˜πΊ)    &   (πœ‘ β†’ 𝑅 ∈ SRing)    &   (πœ‘ β†’ 𝐴 ∈ 𝑆)    &   (πœ‘ β†’ 𝐡 ∈ 𝑆)    &   (πœ‘ β†’ 𝐾 ∈ β„•0)    &   (πœ‘ β†’ (𝐴 Γ— 𝐡) = (𝐡 Γ— 𝐴))    β‡’   (πœ‘ β†’ ((𝐾 ↑ 𝐡) Γ— 𝐴) = (𝐴 Γ— (𝐾 ↑ 𝐡)))
 
Theoremsrgpcompp 13174 If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Baseβ€˜π‘…)    &    Γ— = (.rβ€˜π‘…)    &   πΊ = (mulGrpβ€˜π‘…)    &    ↑ = (.gβ€˜πΊ)    &   (πœ‘ β†’ 𝑅 ∈ SRing)    &   (πœ‘ β†’ 𝐴 ∈ 𝑆)    &   (πœ‘ β†’ 𝐡 ∈ 𝑆)    &   (πœ‘ β†’ 𝐾 ∈ β„•0)    &   (πœ‘ β†’ (𝐴 Γ— 𝐡) = (𝐡 Γ— 𝐴))    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (((𝑁 ↑ 𝐴) Γ— (𝐾 ↑ 𝐡)) Γ— 𝐴) = (((𝑁 + 1) ↑ 𝐴) Γ— (𝐾 ↑ 𝐡)))
 
Theoremsrgpcomppsc 13175 If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Baseβ€˜π‘…)    &    Γ— = (.rβ€˜π‘…)    &   πΊ = (mulGrpβ€˜π‘…)    &    ↑ = (.gβ€˜πΊ)    &   (πœ‘ β†’ 𝑅 ∈ SRing)    &   (πœ‘ β†’ 𝐴 ∈ 𝑆)    &   (πœ‘ β†’ 𝐡 ∈ 𝑆)    &   (πœ‘ β†’ 𝐾 ∈ β„•0)    &   (πœ‘ β†’ (𝐴 Γ— 𝐡) = (𝐡 Γ— 𝐴))    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &    Β· = (.gβ€˜π‘…)    &   (πœ‘ β†’ 𝐢 ∈ β„•0)    β‡’   (πœ‘ β†’ ((𝐢 Β· ((𝑁 ↑ 𝐴) Γ— (𝐾 ↑ 𝐡))) Γ— 𝐴) = (𝐢 Β· (((𝑁 + 1) ↑ 𝐴) Γ— (𝐾 ↑ 𝐡))))
 
Theoremsrglmhm 13176* Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡) β†’ (π‘₯ ∈ 𝐡 ↦ (𝑋 Β· π‘₯)) ∈ (𝑅 MndHom 𝑅))
 
Theoremsrgrmhm 13177* Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐡) β†’ (π‘₯ ∈ 𝐡 ↦ (π‘₯ Β· 𝑋)) ∈ (𝑅 MndHom 𝑅))
 
Theoremsrg1expzeq1 13178 The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 13010. (Contributed by AV, 25-Nov-2019.)
𝐺 = (mulGrpβ€˜π‘…)    &    Β· = (.gβ€˜πΊ)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ SRing ∧ 𝑁 ∈ β„•0) β†’ (𝑁 Β· 1 ) = 1 )
 
7.3.4  Definition and basic properties of unital rings
 
Syntaxcrg 13179 Extend class notation with class of all (unital) rings.
class Ring
 
Syntaxccrg 13180 Extend class notation with class of all (unital) commutative rings.
class CRing
 
Definitiondf-ring 13181* Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in [BourbakiAlg1] p. 92 or definition of a ring with identity in part Preliminaries of [Roman] p. 19. So that the additive structure must be abelian (see ringcom 13214), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 27-Dec-2014.)
Ring = {𝑓 ∈ Grp ∣ ((mulGrpβ€˜π‘“) ∈ Mnd ∧ [(Baseβ€˜π‘“) / π‘Ÿ][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑]βˆ€π‘₯ ∈ π‘Ÿ βˆ€π‘¦ ∈ π‘Ÿ βˆ€π‘§ ∈ π‘Ÿ ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))))}
 
Definitiondf-cring 13182 Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015.)
CRing = {𝑓 ∈ Ring ∣ (mulGrpβ€˜π‘“) ∈ CMnd}
 
Theoremisring 13183* The predicate "is a (unital) ring". Definition of "ring with unit" in [Schechter] p. 187. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐡 = (Baseβ€˜π‘…)    &   πΊ = (mulGrpβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
 
Theoremringgrp 13184 A ring is a group. (Contributed by NM, 15-Sep-2011.)
(𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
 
Theoremringmgp 13185 A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐺 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ 𝐺 ∈ Mnd)
 
Theoremiscrng 13186 A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐺 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
 
Theoremcrngmgp 13187 A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐺 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ CRing β†’ 𝐺 ∈ CMnd)
 
Theoremringgrpd 13188 A ring is a group. (Contributed by SN, 16-May-2024.)
(πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ 𝑅 ∈ Grp)
 
Theoremringmnd 13189 A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝑅 ∈ Ring β†’ 𝑅 ∈ Mnd)
 
Theoremringmgm 13190 A ring is a magma. (Contributed by AV, 31-Jan-2020.)
(𝑅 ∈ Ring β†’ 𝑅 ∈ Mgm)
 
Theoremcrngring 13191 A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
 
Theoremcrngringd 13192 A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
(πœ‘ β†’ 𝑅 ∈ CRing)    β‡’   (πœ‘ β†’ 𝑅 ∈ Ring)
 
Theoremcrnggrpd 13193 A commutative ring is a group. (Contributed by SN, 16-May-2024.)
(πœ‘ β†’ 𝑅 ∈ CRing)    β‡’   (πœ‘ β†’ 𝑅 ∈ Grp)
 
Theoremmgpf 13194 Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
(mulGrp β†Ύ Ring):Ring⟢Mnd
 
Theoremringdilem 13195 Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 Β· (π‘Œ + 𝑍)) = ((𝑋 Β· π‘Œ) + (𝑋 Β· 𝑍)) ∧ ((𝑋 + π‘Œ) Β· 𝑍) = ((𝑋 Β· 𝑍) + (π‘Œ Β· 𝑍))))
 
Theoremringcl 13196 Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 Β· π‘Œ) ∈ 𝐡)
 
Theoremcrngcom 13197 A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 Β· π‘Œ) = (π‘Œ Β· 𝑋))
 
Theoremiscrng2 13198* A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ Β· 𝑦) = (𝑦 Β· π‘₯)))
 
Theoremringass 13199 Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 Β· π‘Œ) Β· 𝑍) = (𝑋 Β· (π‘Œ Β· 𝑍)))
 
Theoremringideu 13200* The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ βˆƒ!𝑒 ∈ 𝐡 βˆ€π‘₯ ∈ 𝐡 ((𝑒 Β· π‘₯) = π‘₯ ∧ (π‘₯ Β· 𝑒) = π‘₯))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >