Theorem List for Intuitionistic Logic Explorer - 13101-13200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Definition | df-cco 13101 |
Define the composition operation of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
| ⊢ comp = Slot ;15 |
| |
| Theorem | strleund 13102 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |
| |
| Theorem | strleun 13103 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
| ⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 |
| |
| Theorem | strext 13104 |
Extending the upper range of a structure. This works because when we
say that a structure has components in 𝐴...𝐶 we are not saying
that every slot in that range is present, just that all the slots that
are present are within that range. (Contributed by Jim Kingdon,
26-Feb-2025.)
|
| ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵))
⇒ ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
| |
| Theorem | strle1g 13105 |
Make a structure from a singleton. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| |
| Theorem | strle2g 13106 |
Make a structure from a pair. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
| |
| Theorem | strle3g 13107 |
Make a structure from a triple. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽
& ⊢ 𝐽 < 𝐾
& ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉) |
| |
| Theorem | plusgndx 13108 |
Index value of the df-plusg 13089 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (+g‘ndx) =
2 |
| |
| Theorem | plusgid 13109 |
Utility theorem: index-independent form of df-plusg 13089. (Contributed by
NM, 20-Oct-2012.)
|
| ⊢ +g = Slot
(+g‘ndx) |
| |
| Theorem | plusgndxnn 13110 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 17-Oct-2024.)
|
| ⊢ (+g‘ndx) ∈
ℕ |
| |
| Theorem | plusgslid 13111 |
Slot property of +g. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (+g = Slot
(+g‘ndx) ∧ (+g‘ndx) ∈
ℕ) |
| |
| Theorem | basendxltplusgndx 13112 |
The index of the slot for the base set is less then the index of the slot
for the group operation in an extensible structure. (Contributed by AV,
17-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(+g‘ndx) |
| |
| Theorem | opelstrsl 13113 |
The slot of a structure which contains an ordered pair for that slot.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| |
| Theorem | opelstrbas 13114 |
The base set of a structure with a base set. (Contributed by AV,
10-Nov-2021.)
|
| ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
| |
| Theorem | 1strstrg 13115 |
A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
(Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) |
| |
| Theorem | 1strbas 13116 |
The base set of a constructed one-slot structure. (Contributed by AV,
27-Mar-2020.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2strstrndx 13117 |
A constructed two-slot structure not depending on the hard-coded index
value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.)
(Revised by Jim Kingdon, 14-Dec-2025.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
| |
| Theorem | 2strstrg 13118 |
A constructed two-slot structure. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) Use 2strstrndx 13117
instead. (New usage is discouraged.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) |
| |
| Theorem | 2strbasg 13119 |
The base set of a constructed two-slot structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2stropg 13120 |
The other slot of a constructed two-slot structure. (Contributed by
Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| |
| Theorem | 2strstr1g 13121 |
A constructed two-slot structure. Version of 2strstrg 13118 not depending
on the hard-coded index value of the base set. (Contributed by AV,
22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
| |
| Theorem | 2strbas1g 13122 |
The base set of a constructed two-slot structure. Version of 2strbasg 13119
not depending on the hard-coded index value of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2strop1g 13123 |
The other slot of a constructed two-slot structure. Version of
2stropg 13120 not depending on the hard-coded index value
of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| |
| Theorem | basendxnplusgndx 13124 |
The slot for the base set is not the slot for the group operation in an
extensible structure. (Contributed by AV, 14-Nov-2021.)
|
| ⊢ (Base‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | grpstrg 13125 |
A constructed group is a structure on 1...2.
(Contributed by
Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) |
| |
| Theorem | grpbaseg 13126 |
The base set of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | grpplusgg 13127 |
The operation of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + =
(+g‘𝐺)) |
| |
| Theorem | ressplusgd 13128 |
+g is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → + =
(+g‘𝐻)) |
| |
| Theorem | mulrndx 13129 |
Index value of the df-mulr 13090 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (.r‘ndx) =
3 |
| |
| Theorem | mulridx 13130 |
Utility theorem: index-independent form of df-mulr 13090. (Contributed by
Mario Carneiro, 8-Jun-2013.)
|
| ⊢ .r = Slot
(.r‘ndx) |
| |
| Theorem | mulrslid 13131 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
| |
| Theorem | plusgndxnmulrndx 13132 |
The slot for the group (addition) operation is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 16-Feb-2020.)
|
| ⊢ (+g‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | basendxnmulrndx 13133 |
The slot for the base set is not the slot for the ring (multiplication)
operation in an extensible structure. (Contributed by AV,
16-Feb-2020.)
|
| ⊢ (Base‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | rngstrg 13134 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
| |
| Theorem | rngbaseg 13135 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | rngplusgg 13136 |
The additive operation of a constructed ring. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + =
(+g‘𝑅)) |
| |
| Theorem | rngmulrg 13137 |
The multiplicative operation of a constructed ring. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · =
(.r‘𝑅)) |
| |
| Theorem | starvndx 13138 |
Index value of the df-starv 13091 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (*𝑟‘ndx) =
4 |
| |
| Theorem | starvid 13139 |
Utility theorem: index-independent form of df-starv 13091. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ *𝑟 = Slot
(*𝑟‘ndx) |
| |
| Theorem | starvslid 13140 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
| ⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
| |
| Theorem | starvndxnbasendx 13141 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | starvndxnplusgndx 13142 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | starvndxnmulrndx 13143 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | ressmulrg 13144 |
.r is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ 𝑆 = (𝑅 ↾s 𝐴)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · =
(.r‘𝑆)) |
| |
| Theorem | srngstrd 13145 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
| |
| Theorem | srngbased 13146 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | srngplusgd 13147 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
| |
| Theorem | srngmulrd 13148 |
The multiplication operation of a constructed star ring. (Contributed
by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → · =
(.r‘𝑅)) |
| |
| Theorem | srnginvld 13149 |
The involution function of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
| |
| Theorem | scandx 13150 |
Index value of the df-sca 13092 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (Scalar‘ndx) = 5 |
| |
| Theorem | scaid 13151 |
Utility theorem: index-independent form of scalar df-sca 13092. (Contributed
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ Scalar = Slot
(Scalar‘ndx) |
| |
| Theorem | scaslid 13152 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
| |
| Theorem | scandxnbasendx 13153 |
The slot for the scalar is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | scandxnplusgndx 13154 |
The slot for the scalar field is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | scandxnmulrndx 13155 |
The slot for the scalar field is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | vscandx 13156 |
Index value of the df-vsca 13093 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ ( ·𝑠
‘ndx) = 6 |
| |
| Theorem | vscaid 13157 |
Utility theorem: index-independent form of scalar product df-vsca 13093.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ ·𝑠 = Slot
( ·𝑠 ‘ndx) |
| |
| Theorem | vscandxnbasendx 13158 |
The slot for the scalar product is not the slot for the base set in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Base‘ndx) |
| |
| Theorem | vscandxnplusgndx 13159 |
The slot for the scalar product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (+g‘ndx) |
| |
| Theorem | vscandxnmulrndx 13160 |
The slot for the scalar product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (.r‘ndx) |
| |
| Theorem | vscandxnscandx 13161 |
The slot for the scalar product is not the slot for the scalar field in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Scalar‘ndx) |
| |
| Theorem | vscaslid 13162 |
Slot property of ·𝑠.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ ( ·𝑠 = Slot
( ·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| |
| Theorem | lmodstrd 13163 |
A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
| |
| Theorem | lmodbased 13164 |
The base set of a constructed left vector space. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| |
| Theorem | lmodplusgd 13165 |
The additive operation of a constructed left vector space. (Contributed
by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
| |
| Theorem | lmodscad 13166 |
The set of scalars of a constructed left vector space. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| |
| Theorem | lmodvscad 13167 |
The scalar product operation of a constructed left vector space.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
| |
| Theorem | ipndx 13168 |
Index value of the df-ip 13094 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢
(·𝑖‘ndx) = 8 |
| |
| Theorem | ipid 13169 |
Utility theorem: index-independent form of df-ip 13094. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ ·𝑖 = Slot
(·𝑖‘ndx) |
| |
| Theorem | ipslid 13170 |
Slot property of ·𝑖.
(Contributed by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ (·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
| |
| Theorem | ipndxnbasendx 13171 |
The slot for the inner product is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | ipndxnplusgndx 13172 |
The slot for the inner product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | ipndxnmulrndx 13173 |
The slot for the inner product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | slotsdifipndx 13174 |
The slot for the scalar is not the index of other slots. (Contributed by
AV, 12-Nov-2024.)
|
| ⊢ (( ·𝑠
‘ndx) ≠ (·𝑖‘ndx) ∧
(Scalar‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | ipsstrd 13175 |
A constructed inner product space is a structure. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| |
| Theorem | ipsbased 13176 |
The base set of a constructed inner product space. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
| |
| Theorem | ipsaddgd 13177 |
The additive operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + =
(+g‘𝐴)) |
| |
| Theorem | ipsmulrd 13178 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × =
(.r‘𝐴)) |
| |
| Theorem | ipsscad 13179 |
The set of scalars of a constructed inner product space. (Contributed
by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) |
| |
| Theorem | ipsvscad 13180 |
The scalar product operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝐴)) |
| |
| Theorem | ipsipd 13181 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 =
(·𝑖‘𝐴)) |
| |
| Theorem | ressscag 13182 |
Scalar is unaffected by restriction. (Contributed by
Mario
Carneiro, 7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
| |
| Theorem | ressvscag 13183 |
·𝑠 is unaffected by
restriction. (Contributed by Mario Carneiro,
7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ · = (
·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → · = (
·𝑠 ‘𝐻)) |
| |
| Theorem | ressipg 13184 |
The inner product is unaffected by restriction. (Contributed by
Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ , =
(·𝑖‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → , =
(·𝑖‘𝐻)) |
| |
| Theorem | tsetndx 13185 |
Index value of the df-tset 13095 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (TopSet‘ndx) = 9 |
| |
| Theorem | tsetid 13186 |
Utility theorem: index-independent form of df-tset 13095. (Contributed by
NM, 20-Oct-2012.)
|
| ⊢ TopSet = Slot
(TopSet‘ndx) |
| |
| Theorem | tsetslid 13187 |
Slot property of TopSet. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ (TopSet = Slot (TopSet‘ndx) ∧
(TopSet‘ndx) ∈ ℕ) |
| |
| Theorem | tsetndxnn 13188 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ∈
ℕ |
| |
| Theorem | basendxlttsetndx 13189 |
The index of the slot for the base set is less then the index of the slot
for the topology in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(TopSet‘ndx) |
| |
| Theorem | tsetndxnbasendx 13190 |
The slot for the topology is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened
by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | tsetndxnplusgndx 13191 |
The slot for the topology is not the slot for the group operation in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | tsetndxnmulrndx 13192 |
The slot for the topology is not the slot for the ring multiplication
operation in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | tsetndxnstarvndx 13193 |
The slot for the topology is not the slot for the involution in an
extensible structure. (Contributed by AV, 11-Nov-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(*𝑟‘ndx) |
| |
| Theorem | slotstnscsi 13194 |
The slots Scalar, ·𝑠 and ·𝑖 are different from the
slot
TopSet. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx)
∧ (TopSet‘ndx) ≠ ( ·𝑠
‘ndx) ∧ (TopSet‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | topgrpstrd 13195 |
A constructed topological group is a structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
| |
| Theorem | topgrpbasd 13196 |
The base set of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| |
| Theorem | topgrpplusgd 13197 |
The additive operation of a constructed topological group. (Contributed
by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
| |
| Theorem | topgrptsetd 13198 |
The topology of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) |
| |
| Theorem | plendx 13199 |
Index value of the df-ple 13096 slot. (Contributed by Mario Carneiro,
14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ (le‘ndx) = ;10 |
| |
| Theorem | pleid 13200 |
Utility theorem: self-referencing, index-independent form of df-ple 13096.
(Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ le = Slot (le‘ndx) |