HomeHome Intuitionistic Logic Explorer
Theorem List (p. 132 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembasmexd 13101 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑𝐴𝐵)       (𝜑𝐺 ∈ V)
 
Theorembasm 13102* A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
𝐵 = (Base‘𝐺)       (𝐴𝐵 → ∃𝑗 𝑗𝐺)
 
Theoremrelelbasov 13103 Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
Rel dom 𝑂    &   Rel 𝑂    &   𝑆 = (𝑋𝑂𝑌)    &   𝐵 = (Base‘𝑆)       (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
 
Theoremreldmress 13104 The structure restriction is a proper operator, so it can be used with ovprc1 6044. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Rel dom ↾s
 
Theoremressvalsets 13105 Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
 
Theoremressex 13106 Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) ∈ V)
 
Theoremressval2 13107 Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
 
Theoremressbasd 13108 Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
(𝜑𝑅 = (𝑊s 𝐴))    &   (𝜑𝐵 = (Base‘𝑊))    &   (𝜑𝑊𝑋)    &   (𝜑𝐴𝑉)       (𝜑 → (𝐴𝐵) = (Base‘𝑅))
 
Theoremressbas2d 13109 Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
(𝜑𝑅 = (𝑊s 𝐴))    &   (𝜑𝐵 = (Base‘𝑊))    &   (𝜑𝑊𝑋)    &   (𝜑𝐴𝐵)       (𝜑𝐴 = (Base‘𝑅))
 
Theoremressbasssd 13110 The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝜑𝑅 = (𝑊s 𝐴))    &   (𝜑𝐵 = (Base‘𝑊))    &   (𝜑𝑊𝑋)    &   (𝜑𝐴𝑉)       (𝜑 → (Base‘𝑅) ⊆ 𝐵)
 
Theoremressbasid 13111 The trivial structure restriction leaves the base set unchanged. (Contributed by Jim Kingdon, 29-Apr-2025.)
𝐵 = (Base‘𝑊)       (𝑊𝑉 → (Base‘(𝑊s 𝐵)) = 𝐵)
 
Theoremstrressid 13112 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
(𝜑𝐵 = (Base‘𝑊))    &   (𝜑𝑊 Struct ⟨𝑀, 𝑁⟩)    &   (𝜑 → Fun 𝑊)    &   (𝜑 → (Base‘ndx) ∈ dom 𝑊)       (𝜑 → (𝑊s 𝐵) = 𝑊)
 
Theoremressval3d 13113 Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
𝑅 = (𝑆s 𝐴)    &   𝐵 = (Base‘𝑆)    &   𝐸 = (Base‘ndx)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑𝐸 ∈ dom 𝑆)    &   (𝜑𝐴𝐵)       (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
 
Theoremresseqnbasd 13114 The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
𝑅 = (𝑊s 𝐴)    &   𝐶 = (𝐸𝑊)    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝐸‘ndx) ≠ (Base‘ndx)    &   (𝜑𝑊𝑋)    &   (𝜑𝐴𝑉)       (𝜑𝐶 = (𝐸𝑅))
 
Theoremressinbasd 13115 Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
(𝜑𝐵 = (Base‘𝑊))    &   (𝜑𝐴𝑋)    &   (𝜑𝑊𝑉)       (𝜑 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
 
Theoremressressg 13116 Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
((𝐴𝑋𝐵𝑌𝑊𝑍) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
 
Theoremressabsg 13117 Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐴𝑋𝐵𝐴𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
 
6.1.2  Slot definitions
 
Syntaxcplusg 13118 Extend class notation with group (addition) operation.
class +g
 
Syntaxcmulr 13119 Extend class notation with ring multiplication.
class .r
 
Syntaxcstv 13120 Extend class notation with involution.
class *𝑟
 
Syntaxcsca 13121 Extend class notation with scalar field.
class Scalar
 
Syntaxcvsca 13122 Extend class notation with scalar product.
class ·𝑠
 
Syntaxcip 13123 Extend class notation with Hermitian form (inner product).
class ·𝑖
 
Syntaxcts 13124 Extend class notation with the topology component of a topological space.
class TopSet
 
Syntaxcple 13125 Extend class notation with "less than or equal to" for posets.
class le
 
Syntaxcoc 13126 Extend class notation with the class of orthocomplementation extractors.
class oc
 
Syntaxcds 13127 Extend class notation with the metric space distance function.
class dist
 
Syntaxcunif 13128 Extend class notation with the uniform structure.
class UnifSet
 
Syntaxchom 13129 Extend class notation with the hom-set structure.
class Hom
 
Syntaxcco 13130 Extend class notation with the composition operation.
class comp
 
Definitiondf-plusg 13131 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
+g = Slot 2
 
Definitiondf-mulr 13132 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
.r = Slot 3
 
Definitiondf-starv 13133 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
*𝑟 = Slot 4
 
Definitiondf-sca 13134 Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
Scalar = Slot 5
 
Definitiondf-vsca 13135 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑠 = Slot 6
 
Definitiondf-ip 13136 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑖 = Slot 8
 
Definitiondf-tset 13137 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
TopSet = Slot 9
 
Definitiondf-ple 13138 Define "less than or equal to" ordering extractor for posets and related structures. We use 10 for the index to avoid conflict with 1 through 9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
le = Slot 10
 
Definitiondf-ocomp 13139 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
oc = Slot 11
 
Definitiondf-ds 13140 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
dist = Slot 12
 
Definitiondf-unif 13141 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
UnifSet = Slot 13
 
Definitiondf-hom 13142 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hom = Slot 14
 
Definitiondf-cco 13143 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
comp = Slot 15
 
Theoremstrleund 13144 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)    &   (𝜑𝐵 < 𝐶)       (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
 
Theoremstrleun 13145 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐹 Struct ⟨𝐴, 𝐵    &   𝐺 Struct ⟨𝐶, 𝐷    &   𝐵 < 𝐶       (𝐹𝐺) Struct ⟨𝐴, 𝐷
 
Theoremstrext 13146 Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐶 ∈ (ℤ𝐵))       (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)
 
Theoremstrle1g 13147 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼       (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
 
Theoremstrle2g 13148 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽       ((𝑋𝑉𝑌𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
 
Theoremstrle3g 13149 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽    &   𝐽 < 𝐾    &   𝐾 ∈ ℕ    &   𝐶 = 𝐾       ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩)
 
Theoremplusgndx 13150 Index value of the df-plusg 13131 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(+g‘ndx) = 2
 
Theoremplusgid 13151 Utility theorem: index-independent form of df-plusg 13131. (Contributed by NM, 20-Oct-2012.)
+g = Slot (+g‘ndx)
 
Theoremplusgndxnn 13152 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.)
(+g‘ndx) ∈ ℕ
 
Theoremplusgslid 13153 Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
(+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
 
Theorembasendxltplusgndx 13154 The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.)
(Base‘ndx) < (+g‘ndx)
 
Theoremopelstrsl 13155 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (𝐸𝑆))
 
Theoremopelstrbas 13156 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (Base‘𝑆))
 
Theorem1strstrg 13157 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐺 Struct ⟨1, 1⟩)
 
Theorem1strbas 13158 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem2strstrndx 13159 A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 14-Dec-2025.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
Theorem2strstrg 13160 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) Use 2strstrndx 13159 instead. (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
 
Theorem2strbasg 13161 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2stropg 13162 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorem2strstr1g 13163 A constructed two-slot structure. Version of 2strstrg 13160 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
Theorem2strbas1g 13164 The base set of a constructed two-slot structure. Version of 2strbasg 13161 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2strop1g 13165 The other slot of a constructed two-slot structure. Version of 2stropg 13162 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ    &   𝐸 = Slot 𝑁       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorembasendxnplusgndx 13166 The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.)
(Base‘ndx) ≠ (+g‘ndx)
 
Theoremgrpstrg 13167 A constructed group is a structure on 1...2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 2⟩)
 
Theoremgrpbaseg 13168 The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theoremgrpplusgg 13169 The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → + = (+g𝐺))
 
Theoremressplusgd 13170 +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(𝜑𝐻 = (𝐺s 𝐴))    &   (𝜑+ = (+g𝐺))    &   (𝜑𝐴𝑉)    &   (𝜑𝐺𝑊)       (𝜑+ = (+g𝐻))
 
Theoremmulrndx 13171 Index value of the df-mulr 13132 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(.r‘ndx) = 3
 
Theoremmulridx 13172 Utility theorem: index-independent form of df-mulr 13132. (Contributed by Mario Carneiro, 8-Jun-2013.)
.r = Slot (.r‘ndx)
 
Theoremmulrslid 13173 Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
(.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
 
Theoremplusgndxnmulrndx 13174 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(+g‘ndx) ≠ (.r‘ndx)
 
Theorembasendxnmulrndx 13175 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(Base‘ndx) ≠ (.r‘ndx)
 
Theoremrngstrg 13176 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
 
Theoremrngbaseg 13177 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝐵 = (Base‘𝑅))
 
Theoremrngplusgg 13178 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → + = (+g𝑅))
 
Theoremrngmulrg 13179 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → · = (.r𝑅))
 
Theoremstarvndx 13180 Index value of the df-starv 13133 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(*𝑟‘ndx) = 4
 
Theoremstarvid 13181 Utility theorem: index-independent form of df-starv 13133. (Contributed by Mario Carneiro, 6-Oct-2013.)
*𝑟 = Slot (*𝑟‘ndx)
 
Theoremstarvslid 13182 Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.)
(*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ)
 
Theoremstarvndxnbasendx 13183 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(*𝑟‘ndx) ≠ (Base‘ndx)
 
Theoremstarvndxnplusgndx 13184 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(*𝑟‘ndx) ≠ (+g‘ndx)
 
Theoremstarvndxnmulrndx 13185 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(*𝑟‘ndx) ≠ (.r‘ndx)
 
Theoremressmulrg 13186 .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)    &    · = (.r𝑅)       ((𝐴𝑉𝑅𝑊) → · = (.r𝑆))
 
Theoremsrngstrd 13187 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝑅 Struct ⟨1, 4⟩)
 
Theoremsrngbased 13188 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝐵 = (Base‘𝑅))
 
Theoremsrngplusgd 13189 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑+ = (+g𝑅))
 
Theoremsrngmulrd 13190 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑· = (.r𝑅))
 
Theoremsrnginvld 13191 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑 = (*𝑟𝑅))
 
Theoremscandx 13192 Index value of the df-sca 13134 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(Scalar‘ndx) = 5
 
Theoremscaid 13193 Utility theorem: index-independent form of scalar df-sca 13134. (Contributed by Mario Carneiro, 19-Jun-2014.)
Scalar = Slot (Scalar‘ndx)
 
Theoremscaslid 13194 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
(Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
 
Theoremscandxnbasendx 13195 The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
(Scalar‘ndx) ≠ (Base‘ndx)
 
Theoremscandxnplusgndx 13196 The slot for the scalar field is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(Scalar‘ndx) ≠ (+g‘ndx)
 
Theoremscandxnmulrndx 13197 The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(Scalar‘ndx) ≠ (.r‘ndx)
 
Theoremvscandx 13198 Index value of the df-vsca 13135 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
( ·𝑠 ‘ndx) = 6
 
Theoremvscaid 13199 Utility theorem: index-independent form of scalar product df-vsca 13135. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
·𝑠 = Slot ( ·𝑠 ‘ndx)
 
Theoremvscandxnbasendx 13200 The slot for the scalar product is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (Base‘ndx)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >