HomeHome Intuitionistic Logic Explorer
Theorem List (p. 132 of 152)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnmzsubg 13101* The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
 
Theoremssnmz 13102* A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
 
Theoremisnsg4 13103* A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋))
 
Theoremnmznsg 13104* Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑁)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
 
Theorem0nsg 13105 The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
0 = (0g𝐺)       (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
 
Theoremnsgid 13106 The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
 
Theorem0idnsgd 13107 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)       (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺))
 
Theoremtrivnsgd 13108 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (NrmSGrp‘𝐺) = {𝐵})
 
Theoremtriv1nsgd 13109 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)
 
Theorem1nsgtrivd 13110 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)       (𝜑𝐵 = { 0 })
 
Theoremreleqgg 13111 The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑊) → Rel 𝑅)
 
Theoremeqgex 13112 The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) ∈ V)
 
Theoremeqgfval 13113* Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &    + = (+g𝐺)    &   𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
 
Theoremeqgval 13114 Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &    + = (+g𝐺)    &   𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
 
Theoremeqger 13115 The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)       (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
 
Theoremeqglact 13116* A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
 
Theoremeqgid 13117 The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    0 = (0g𝐺)       (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
 
Theoremeqgen 13118 Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)       ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)
 
Theoremeqgcpbl 13119 The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    + = (+g𝐺)       (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
 
7.2.4  Abelian groups
 
7.2.4.1  Definition and basic properties
 
Syntaxccmn 13120 Extend class notation with class of all commutative monoids.
class CMnd
 
Syntaxcabl 13121 Extend class notation with class of all Abelian groups.
class Abel
 
Definitiondf-cmn 13122* Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.)
CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g𝑔)𝑏) = (𝑏(+g𝑔)𝑎)}
 
Definitiondf-abl 13123 Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Abel = (Grp ∩ CMnd)
 
Theoremisabl 13124 The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
(𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
 
Theoremablgrp 13125 An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
(𝐺 ∈ Abel → 𝐺 ∈ Grp)
 
Theoremablgrpd 13126 An Abelian group is a group, deduction form of ablgrp 13125. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐺 ∈ Abel)       (𝜑𝐺 ∈ Grp)
 
Theoremablcmn 13127 An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝐺 ∈ Abel → 𝐺 ∈ CMnd)
 
Theoremablcmnd 13128 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝐺 ∈ Abel)       (𝜑𝐺 ∈ CMnd)
 
Theoremiscmn 13129* The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
 
Theoremisabl2 13130* The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
 
Theoremcmnpropd 13131* If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
 
Theoremablpropd 13132* If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
 
Theoremablprop 13133 If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)
 
Theoremiscmnd 13134* Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑𝐺 ∈ Mnd)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       (𝜑𝐺 ∈ CMnd)
 
Theoremisabld 13135* Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑𝐺 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       (𝜑𝐺 ∈ Abel)
 
Theoremisabli 13136* Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
𝐺 ∈ Grp    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       𝐺 ∈ Abel
 
Theoremcmnmnd 13137 A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
 
Theoremcmncom 13138 A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremablcom 13139 An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremcmn32 13140 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremcmn4 13141 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 
Theoremcmn12 13142 Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
 
Theoremabl32 13143 Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremcmnmndd 13144 A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝐺 ∈ CMnd)       (𝜑𝐺 ∈ Mnd)
 
Theoremrinvmod 13145* Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6081. (Contributed by AV, 31-Dec-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐴𝐵)       (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
 
Theoremablinvadd 13146 The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))
 
Theoremablsub2inv 13147 Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))
 
Theoremablsubadd 13148 Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋))
 
Theoremablsub4 13149 Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))
 
Theoremabladdsub4 13150 Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 𝑍) = (𝑊 𝑌)))
 
Theoremabladdsub 13151 Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))
 
Theoremablpncan2 13152 Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)
 
Theoremablpncan3 13153 A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = 𝑌)
 
Theoremablsubsub 13154 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))
 
Theoremablsubsub4 13155 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
 
Theoremablpnpcan 13156 Cancellation law for mixed addition and subtraction. (pnpcan 8209 analog.) (Contributed by NM, 29-May-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = (𝑌 𝑍))
 
Theoremablnncan 13157 Cancellation law for group subtraction. (nncan 8199 analog.) (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)
 
Theoremablsub32 13158 Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑍) 𝑌))
 
Theoremablnnncan 13159 Cancellation law for group subtraction. (nnncan 8205 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))
 
Theoremablnnncan1 13160 Cancellation law for group subtraction. (nnncan1 8206 analog.) (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
 
Theoremablsubsub23 13161 Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))
 
Theoremghmcmn 13162* The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ CMnd)       (𝜑𝐻 ∈ CMnd)
 
Theoremghmabl 13163* The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Abel)       (𝜑𝐻 ∈ Abel)
 
Theoremeqgabl 13164 Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &    = (-g𝐺)    &    = (𝐺 ~QG 𝑆)       ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
 
Theoremqusecsub 13165 Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &    = (𝐺 ~QG 𝑆)       (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] = [𝑌] ↔ (𝑌 𝑋) ∈ 𝑆))
 
Theoremsubgabl 13166 A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
𝐻 = (𝐺s 𝑆)       ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
 
Theoremsubcmnd 13167 A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
(𝜑𝐻 = (𝐺s 𝑆))    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑆𝑉)       (𝜑𝐻 ∈ CMnd)
 
Theoremablnsg 13168 Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
 
Theoremablressid 13169 A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12544. (Contributed by Jim Kingdon, 5-May-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)
 
7.3  Rings
 
7.3.1  Multiplicative Group
 
Syntaxcmgp 13170 Multiplicative group.
class mulGrp
 
Definitiondf-mgp 13171 Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" or "the multiplicative identity" in terms of the identity of a monoid (df-ur 13207). (Contributed by Mario Carneiro, 21-Dec-2014.)
mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
 
Theoremfnmgp 13172 The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
mulGrp Fn V
 
Theoremmgpvalg 13173 Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)       (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
 
Theoremmgpplusgg 13174 Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)       (𝑅𝑉· = (+g𝑀))
 
Theoremmgpex 13175 Existence of the multiplication group. If 𝑅 is known to be a semiring, see srgmgp 13215. (Contributed by Jim Kingdon, 10-Jan-2025.)
𝑀 = (mulGrp‘𝑅)       (𝑅𝑉𝑀 ∈ V)
 
Theoremmgpbasg 13176 Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅𝑉𝐵 = (Base‘𝑀))
 
Theoremmgpscag 13177 The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑆 = (Scalar‘𝑅)       (𝑅𝑉𝑆 = (Scalar‘𝑀))
 
Theoremmgptsetg 13178 Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)       (𝑅𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀))
 
Theoremmgptopng 13179 Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐽 = (TopOpen‘𝑅)       (𝑅𝑉𝐽 = (TopOpen‘𝑀))
 
Theoremmgpdsg 13180 Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (dist‘𝑅)       (𝑅𝑉𝐵 = (dist‘𝑀))
 
Theoremmgpress 13181 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
𝑆 = (𝑅s 𝐴)    &   𝑀 = (mulGrp‘𝑅)       ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
 
7.3.2  Non-unital rings ("rngs")

According to Wikipedia, "... in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 28-Mar-2025).

 
Syntaxcrng 13182 Extend class notation with class of all non-unital rings.
class Rng
 
Definitiondf-rng 13183* Define the class of all non-unital rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.)
Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
 
Theoremisrng 13184* The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
 
Theoremrngabl 13185 A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
(𝑅 ∈ Rng → 𝑅 ∈ Abel)
 
Theoremrngmgp 13186 A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ Rng → 𝐺 ∈ Smgrp)
 
Theoremrngmgpf 13187 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13258 analog). (Contributed by AV, 22-Feb-2025.)
(mulGrp ↾ Rng):Rng⟶Smgrp
 
Theoremrnggrp 13188 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
(𝑅 ∈ Rng → 𝑅 ∈ Grp)
 
Theoremrngass 13189 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremrngdi 13190 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
 
Theoremrngdir 13191 Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
 
Theoremrngacl 13192 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremrng0cl 13193 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Rng → 0𝐵)
 
Theoremrngcl 13194 Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremrnglz 13195 The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13290. (Revised by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremrngrz 13196 The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13291. (Revised by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremrngmneg1 13197 Negation of a product in a non-unital ring (mulneg1 8365 analog). In contrast to ringmneg1 13298, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremrngmneg2 13198 Negation of a product in a non-unital ring (mulneg2 8366 analog). In contrast to ringmneg2 13299, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremrngm2neg 13199 Double negation of a product in a non-unital ring (mul2neg 8368 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13300. (Revised by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = (𝑋 · 𝑌))
 
Theoremrngansg 13200 Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
(𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15104
  Copyright terms: Public domain < Previous  Next >