Step | Hyp | Ref
| Expression |
1 | | fveq2 5516 |
. . . . . 6
β’ (π = π
β (mulGrpβπ) = (mulGrpβπ
)) |
2 | | isring.g |
. . . . . 6
β’ πΊ = (mulGrpβπ
) |
3 | 1, 2 | eqtr4di 2228 |
. . . . 5
β’ (π = π
β (mulGrpβπ) = πΊ) |
4 | 3 | eleq1d 2246 |
. . . 4
β’ (π = π
β ((mulGrpβπ) β Mnd β πΊ β Mnd)) |
5 | | basfn 12520 |
. . . . . . 7
β’ Base Fn
V |
6 | | vex 2741 |
. . . . . . 7
β’ π β V |
7 | | funfvex 5533 |
. . . . . . . 8
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
8 | 7 | funfni 5317 |
. . . . . . 7
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
9 | 5, 6, 8 | mp2an 426 |
. . . . . 6
β’
(Baseβπ)
β V |
10 | 9 | a1i 9 |
. . . . 5
β’ (π = π
β (Baseβπ) β V) |
11 | | fveq2 5516 |
. . . . . 6
β’ (π = π
β (Baseβπ) = (Baseβπ
)) |
12 | | isring.b |
. . . . . 6
β’ π΅ = (Baseβπ
) |
13 | 11, 12 | eqtr4di 2228 |
. . . . 5
β’ (π = π
β (Baseβπ) = π΅) |
14 | | plusgslid 12571 |
. . . . . . . . 9
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
15 | 14 | slotex 12489 |
. . . . . . . 8
β’ (π β V β
(+gβπ)
β V) |
16 | 15 | elv 2742 |
. . . . . . 7
β’
(+gβπ) β V |
17 | 16 | a1i 9 |
. . . . . 6
β’ ((π = π
β§ π = π΅) β (+gβπ) β V) |
18 | | simpl 109 |
. . . . . . . 8
β’ ((π = π
β§ π = π΅) β π = π
) |
19 | 18 | fveq2d 5520 |
. . . . . . 7
β’ ((π = π
β§ π = π΅) β (+gβπ) = (+gβπ
)) |
20 | | isring.p |
. . . . . . 7
β’ + =
(+gβπ
) |
21 | 19, 20 | eqtr4di 2228 |
. . . . . 6
β’ ((π = π
β§ π = π΅) β (+gβπ) = + ) |
22 | | mulrslid 12590 |
. . . . . . . . . 10
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
23 | 22 | slotex 12489 |
. . . . . . . . 9
β’ (π β V β
(.rβπ)
β V) |
24 | 23 | elv 2742 |
. . . . . . . 8
β’
(.rβπ) β V |
25 | 24 | a1i 9 |
. . . . . . 7
β’ (((π = π
β§ π = π΅) β§ π = + ) β
(.rβπ)
β V) |
26 | | simpll 527 |
. . . . . . . . 9
β’ (((π = π
β§ π = π΅) β§ π = + ) β π = π
) |
27 | 26 | fveq2d 5520 |
. . . . . . . 8
β’ (((π = π
β§ π = π΅) β§ π = + ) β
(.rβπ) =
(.rβπ
)) |
28 | | isring.t |
. . . . . . . 8
β’ Β· =
(.rβπ
) |
29 | 27, 28 | eqtr4di 2228 |
. . . . . . 7
β’ (((π = π
β§ π = π΅) β§ π = + ) β
(.rβπ) =
Β·
) |
30 | | simpllr 534 |
. . . . . . . 8
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β π = π΅) |
31 | | simpr 110 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β π‘ = Β· ) |
32 | | eqidd 2178 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β π₯ = π₯) |
33 | | simplr 528 |
. . . . . . . . . . . . . 14
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β π = + ) |
34 | 33 | oveqd 5892 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (π¦ππ§) = (π¦ + π§)) |
35 | 31, 32, 34 | oveq123d 5896 |
. . . . . . . . . . . 12
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (π₯π‘(π¦ππ§)) = (π₯ Β· (π¦ + π§))) |
36 | 31 | oveqd 5892 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (π₯π‘π¦) = (π₯ Β· π¦)) |
37 | 31 | oveqd 5892 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (π₯π‘π§) = (π₯ Β· π§)) |
38 | 33, 36, 37 | oveq123d 5896 |
. . . . . . . . . . . 12
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β ((π₯π‘π¦)π(π₯π‘π§)) = ((π₯ Β· π¦) + (π₯ Β· π§))) |
39 | 35, 38 | eqeq12d 2192 |
. . . . . . . . . . 11
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β (π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)))) |
40 | 33 | oveqd 5892 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (π₯ππ¦) = (π₯ + π¦)) |
41 | | eqidd 2178 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β π§ = π§) |
42 | 31, 40, 41 | oveq123d 5896 |
. . . . . . . . . . . 12
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β ((π₯ππ¦)π‘π§) = ((π₯ + π¦) Β· π§)) |
43 | 31 | oveqd 5892 |
. . . . . . . . . . . . 13
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (π¦π‘π§) = (π¦ Β· π§)) |
44 | 33, 37, 43 | oveq123d 5896 |
. . . . . . . . . . . 12
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β ((π₯π‘π§)π(π¦π‘π§)) = ((π₯ Β· π§) + (π¦ Β· π§))) |
45 | 42, 44 | eqeq12d 2192 |
. . . . . . . . . . 11
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§)) β ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)))) |
46 | 39, 45 | anbi12d 473 |
. . . . . . . . . 10
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β (((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
47 | 30, 46 | raleqbidv 2685 |
. . . . . . . . 9
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β
(βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
48 | 30, 47 | raleqbidv 2685 |
. . . . . . . 8
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β
(βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
49 | 30, 48 | raleqbidv 2685 |
. . . . . . 7
β’ ((((π = π
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β
(βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
50 | 25, 29, 49 | sbcied2 3001 |
. . . . . 6
β’ (((π = π
β§ π = π΅) β§ π = + ) β
([(.rβπ) / π‘]βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
51 | 17, 21, 50 | sbcied2 3001 |
. . . . 5
β’ ((π = π
β§ π = π΅) β ([(+gβπ) / π][(.rβπ) / π‘]βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
52 | 10, 13, 51 | sbcied2 3001 |
. . . 4
β’ (π = π
β ([(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘]βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
53 | 4, 52 | anbi12d 473 |
. . 3
β’ (π = π
β (((mulGrpβπ) β Mnd β§ [(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘]βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§)))) β (πΊ β Mnd β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)))))) |
54 | | df-ring 13181 |
. . 3
β’ Ring =
{π β Grp β£
((mulGrpβπ) β
Mnd β§ [(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘]βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))))} |
55 | 53, 54 | elrab2 2897 |
. 2
β’ (π
β Ring β (π
β Grp β§ (πΊ β Mnd β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)))))) |
56 | | 3anass 982 |
. 2
β’ ((π
β Grp β§ πΊ β Mnd β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)))) β (π
β Grp β§ (πΊ β Mnd β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)))))) |
57 | 55, 56 | bitr4i 187 |
1
β’ (π
β Ring β (π
β Grp β§ πΊ β Mnd β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |