ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isring GIF version

Theorem isring 13183
Description: The predicate "is a (unital) ring". Definition of "ring with unit" in [Schechter] p. 187. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isring.b 𝐡 = (Baseβ€˜π‘…)
isring.g 𝐺 = (mulGrpβ€˜π‘…)
isring.p + = (+gβ€˜π‘…)
isring.t Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
isring (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐡   π‘₯, + ,𝑦,𝑧   π‘₯,𝑅,𝑦,𝑧   π‘₯, Β· ,𝑦,𝑧
Allowed substitution hints:   𝐺(π‘₯,𝑦,𝑧)

Proof of Theorem isring
Dummy variables 𝑝 𝑏 π‘Ÿ 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5516 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (mulGrpβ€˜π‘Ÿ) = (mulGrpβ€˜π‘…))
2 isring.g . . . . . 6 𝐺 = (mulGrpβ€˜π‘…)
31, 2eqtr4di 2228 . . . . 5 (π‘Ÿ = 𝑅 β†’ (mulGrpβ€˜π‘Ÿ) = 𝐺)
43eleq1d 2246 . . . 4 (π‘Ÿ = 𝑅 β†’ ((mulGrpβ€˜π‘Ÿ) ∈ Mnd ↔ 𝐺 ∈ Mnd))
5 basfn 12520 . . . . . . 7 Base Fn V
6 vex 2741 . . . . . . 7 π‘Ÿ ∈ V
7 funfvex 5533 . . . . . . . 8 ((Fun Base ∧ π‘Ÿ ∈ dom Base) β†’ (Baseβ€˜π‘Ÿ) ∈ V)
87funfni 5317 . . . . . . 7 ((Base Fn V ∧ π‘Ÿ ∈ V) β†’ (Baseβ€˜π‘Ÿ) ∈ V)
95, 6, 8mp2an 426 . . . . . 6 (Baseβ€˜π‘Ÿ) ∈ V
109a1i 9 . . . . 5 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) ∈ V)
11 fveq2 5516 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
12 isring.b . . . . . 6 𝐡 = (Baseβ€˜π‘…)
1311, 12eqtr4di 2228 . . . . 5 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
14 plusgslid 12571 . . . . . . . . 9 (+g = Slot (+gβ€˜ndx) ∧ (+gβ€˜ndx) ∈ β„•)
1514slotex 12489 . . . . . . . 8 (π‘Ÿ ∈ V β†’ (+gβ€˜π‘Ÿ) ∈ V)
1615elv 2742 . . . . . . 7 (+gβ€˜π‘Ÿ) ∈ V
1716a1i 9 . . . . . 6 ((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) β†’ (+gβ€˜π‘Ÿ) ∈ V)
18 simpl 109 . . . . . . . 8 ((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) β†’ π‘Ÿ = 𝑅)
1918fveq2d 5520 . . . . . . 7 ((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) β†’ (+gβ€˜π‘Ÿ) = (+gβ€˜π‘…))
20 isring.p . . . . . . 7 + = (+gβ€˜π‘…)
2119, 20eqtr4di 2228 . . . . . 6 ((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) β†’ (+gβ€˜π‘Ÿ) = + )
22 mulrslid 12590 . . . . . . . . . 10 (.r = Slot (.rβ€˜ndx) ∧ (.rβ€˜ndx) ∈ β„•)
2322slotex 12489 . . . . . . . . 9 (π‘Ÿ ∈ V β†’ (.rβ€˜π‘Ÿ) ∈ V)
2423elv 2742 . . . . . . . 8 (.rβ€˜π‘Ÿ) ∈ V
2524a1i 9 . . . . . . 7 (((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) β†’ (.rβ€˜π‘Ÿ) ∈ V)
26 simpll 527 . . . . . . . . 9 (((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) β†’ π‘Ÿ = 𝑅)
2726fveq2d 5520 . . . . . . . 8 (((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) β†’ (.rβ€˜π‘Ÿ) = (.rβ€˜π‘…))
28 isring.t . . . . . . . 8 Β· = (.rβ€˜π‘…)
2927, 28eqtr4di 2228 . . . . . . 7 (((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) β†’ (.rβ€˜π‘Ÿ) = Β· )
30 simpllr 534 . . . . . . . 8 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ 𝑏 = 𝐡)
31 simpr 110 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ 𝑑 = Β· )
32 eqidd 2178 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ π‘₯ = π‘₯)
33 simplr 528 . . . . . . . . . . . . . 14 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ 𝑝 = + )
3433oveqd 5892 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (𝑦𝑝𝑧) = (𝑦 + 𝑧))
3531, 32, 34oveq123d 5896 . . . . . . . . . . . 12 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (π‘₯𝑑(𝑦𝑝𝑧)) = (π‘₯ Β· (𝑦 + 𝑧)))
3631oveqd 5892 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (π‘₯𝑑𝑦) = (π‘₯ Β· 𝑦))
3731oveqd 5892 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (π‘₯𝑑𝑧) = (π‘₯ Β· 𝑧))
3833, 36, 37oveq123d 5896 . . . . . . . . . . . 12 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)))
3935, 38eqeq12d 2192 . . . . . . . . . . 11 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ↔ (π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧))))
4033oveqd 5892 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (π‘₯𝑝𝑦) = (π‘₯ + 𝑦))
41 eqidd 2178 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ 𝑧 = 𝑧)
4231, 40, 41oveq123d 5896 . . . . . . . . . . . 12 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯ + 𝑦) Β· 𝑧))
4331oveqd 5892 . . . . . . . . . . . . 13 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (𝑦𝑑𝑧) = (𝑦 Β· 𝑧))
4433, 37, 43oveq123d 5896 . . . . . . . . . . . 12 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧)) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))
4542, 44eqeq12d 2192 . . . . . . . . . . 11 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧)) ↔ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧))))
4639, 45anbi12d 473 . . . . . . . . . 10 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ↔ ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
4730, 46raleqbidv 2685 . . . . . . . . 9 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ↔ βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
4830, 47raleqbidv 2685 . . . . . . . 8 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ↔ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
4930, 48raleqbidv 2685 . . . . . . 7 ((((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) ∧ 𝑑 = Β· ) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
5025, 29, 49sbcied2 3001 . . . . . 6 (((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) ∧ 𝑝 = + ) β†’ ([(.rβ€˜π‘Ÿ) / 𝑑]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
5117, 21, 50sbcied2 3001 . . . . 5 ((π‘Ÿ = 𝑅 ∧ 𝑏 = 𝐡) β†’ ([(+gβ€˜π‘Ÿ) / 𝑝][(.rβ€˜π‘Ÿ) / 𝑑]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
5210, 13, 51sbcied2 3001 . . . 4 (π‘Ÿ = 𝑅 β†’ ([(Baseβ€˜π‘Ÿ) / 𝑏][(+gβ€˜π‘Ÿ) / 𝑝][(.rβ€˜π‘Ÿ) / 𝑑]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
534, 52anbi12d 473 . . 3 (π‘Ÿ = 𝑅 β†’ (((mulGrpβ€˜π‘Ÿ) ∈ Mnd ∧ [(Baseβ€˜π‘Ÿ) / 𝑏][(+gβ€˜π‘Ÿ) / 𝑝][(.rβ€˜π‘Ÿ) / 𝑑]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧)))) ↔ (𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧))))))
54 df-ring 13181 . . 3 Ring = {π‘Ÿ ∈ Grp ∣ ((mulGrpβ€˜π‘Ÿ) ∈ Mnd ∧ [(Baseβ€˜π‘Ÿ) / 𝑏][(+gβ€˜π‘Ÿ) / 𝑝][(.rβ€˜π‘Ÿ) / 𝑑]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))))}
5553, 54elrab2 2897 . 2 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧))))))
56 3anass 982 . 2 ((𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))) ↔ (𝑅 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧))))))
5755, 56bitr4i 187 1 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)) ∧ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2738  [wsbc 2963   Fn wfn 5212  β€˜cfv 5217  (class class class)co 5875  Basecbs 12462  +gcplusg 12536  .rcmulr 12537  Mndcmnd 12817  Grpcgrp 12877  mulGrpcmgp 13130  Ringcrg 13179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ov 5878  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mulr 12550  df-ring 13181
This theorem is referenced by:  ringgrp  13184  ringmgp  13185  ringdilem  13195  ringpropd  13217  isringd  13220  ringsrg  13224  ring1  13236
  Copyright terms: Public domain W3C validator