Step | Hyp | Ref
| Expression |
1 | | fveq2 5507 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) |
2 | | isring.g |
. . . . . 6
⊢ 𝐺 = (mulGrp‘𝑅) |
3 | 1, 2 | eqtr4di 2226 |
. . . . 5
⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺) |
4 | 3 | eleq1d 2244 |
. . . 4
⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ 𝐺 ∈ Mnd)) |
5 | | basfn 12485 |
. . . . . . 7
⊢ Base Fn
V |
6 | | vex 2738 |
. . . . . . 7
⊢ 𝑟 ∈ V |
7 | | funfvex 5524 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) |
8 | 7 | funfni 5308 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) |
9 | 5, 6, 8 | mp2an 426 |
. . . . . 6
⊢
(Base‘𝑟)
∈ V |
10 | 9 | a1i 9 |
. . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) ∈ V) |
11 | | fveq2 5507 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
12 | | isring.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
13 | 11, 12 | eqtr4di 2226 |
. . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
14 | | plusgslid 12525 |
. . . . . . . . 9
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
15 | 14 | slotex 12455 |
. . . . . . . 8
⊢ (𝑟 ∈ V →
(+g‘𝑟)
∈ V) |
16 | 15 | elv 2739 |
. . . . . . 7
⊢
(+g‘𝑟) ∈ V |
17 | 16 | a1i 9 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (+g‘𝑟) ∈ V) |
18 | | simpl 109 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅) |
19 | 18 | fveq2d 5511 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (+g‘𝑟) = (+g‘𝑅)) |
20 | | isring.p |
. . . . . . 7
⊢ + =
(+g‘𝑅) |
21 | 19, 20 | eqtr4di 2226 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (+g‘𝑟) = + ) |
22 | | mulrslid 12542 |
. . . . . . . . . 10
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
23 | 22 | slotex 12455 |
. . . . . . . . 9
⊢ (𝑟 ∈ V →
(.r‘𝑟)
∈ V) |
24 | 23 | elv 2739 |
. . . . . . . 8
⊢
(.r‘𝑟) ∈ V |
25 | 24 | a1i 9 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
(.r‘𝑟)
∈ V) |
26 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) → 𝑟 = 𝑅) |
27 | 26 | fveq2d 5511 |
. . . . . . . 8
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
(.r‘𝑟) =
(.r‘𝑅)) |
28 | | isring.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
29 | 27, 28 | eqtr4di 2226 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
(.r‘𝑟) =
·
) |
30 | | simpllr 534 |
. . . . . . . 8
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑏 = 𝐵) |
31 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑡 = · ) |
32 | | eqidd 2176 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑥 = 𝑥) |
33 | | simplr 528 |
. . . . . . . . . . . . . 14
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑝 = + ) |
34 | 33 | oveqd 5882 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧)) |
35 | 31, 32, 34 | oveq123d 5886 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
36 | 31 | oveqd 5882 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦)) |
37 | 31 | oveqd 5882 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧)) |
38 | 33, 36, 37 | oveq123d 5886 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
39 | 35, 38 | eqeq12d 2190 |
. . . . . . . . . . 11
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
40 | 33 | oveqd 5882 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) |
41 | | eqidd 2176 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑧 = 𝑧) |
42 | 31, 40, 41 | oveq123d 5886 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
43 | 31 | oveqd 5882 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧)) |
44 | 33, 37, 43 | oveq123d 5886 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
45 | 42, 44 | eqeq12d 2190 |
. . . . . . . . . . 11
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
46 | 39, 45 | anbi12d 473 |
. . . . . . . . . 10
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
47 | 30, 46 | raleqbidv 2682 |
. . . . . . . . 9
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) →
(∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
48 | 30, 47 | raleqbidv 2682 |
. . . . . . . 8
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) →
(∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
49 | 30, 48 | raleqbidv 2682 |
. . . . . . 7
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) →
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
50 | 25, 29, 49 | sbcied2 2998 |
. . . . . 6
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
([(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
51 | 17, 21, 50 | sbcied2 2998 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → ([(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
52 | 10, 13, 51 | sbcied2 2998 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
53 | 4, 52 | anbi12d 473 |
. . 3
⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))) |
54 | | df-ring 12974 |
. . 3
⊢ Ring =
{𝑟 ∈ Grp ∣
((mulGrp‘𝑟) ∈
Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
55 | 53, 54 | elrab2 2894 |
. 2
⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))) |
56 | | 3anass 982 |
. 2
⊢ ((𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) ↔ (𝑅 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))) |
57 | 55, 56 | bitr4i 187 |
1
⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |