| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-eprel | GIF version | ||
| Description: Define the epsilon relation. Similar to Definition 6.22 of [TakeutiZaring] p. 30. The epsilon relation and set membership are the same, that is, (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) when 𝐵 is a set by epelg 4325. Thus, 5 E { 1 , 5 }. (Contributed by NM, 13-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| df-eprel | ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cep 4322 | . 2 class E | |
| 2 | vx | . . . 4 setvar 𝑥 | |
| 3 | vy | . . . 4 setvar 𝑦 | |
| 4 | 2, 3 | wel 2168 | . . 3 wff 𝑥 ∈ 𝑦 | 
| 5 | 4, 2, 3 | copab 4093 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | 
| 6 | 1, 5 | wceq 1364 | 1 wff E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | 
| Colors of variables: wff set class | 
| This definition is referenced by: epelg 4325 rele 4796 | 
| Copyright terms: Public domain | W3C validator |