HomeHome Intuitionistic Logic Explorer
Theorem List (p. 43 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremssexi 4201 The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.)
𝐵 ∈ V    &   𝐴𝐵       𝐴 ∈ V
 
Theoremssexg 4202 The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.)
((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
 
Theoremssexd 4203 A subclass of a set is a set. Deduction form of ssexg 4202. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐵𝐶)    &   (𝜑𝐴𝐵)       (𝜑𝐴 ∈ V)
 
Theoremdifexg 4204 Existence of a difference. (Contributed by NM, 26-May-1998.)
(𝐴𝑉 → (𝐴𝐵) ∈ V)
 
Theoremzfausab 4205* Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
𝐴 ∈ V       {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V
 
Theoremrabexg 4206* Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.)
(𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theoremrabex 4207* Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.)
𝐴 ∈ V       {𝑥𝐴𝜑} ∈ V
 
Theoremrabexd 4208* Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4209. (Contributed by AV, 16-Jul-2019.)
𝐵 = {𝑥𝐴𝜓}    &   (𝜑𝐴𝑉)       (𝜑𝐵 ∈ V)
 
Theoremrabex2 4209* Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
𝐵 = {𝑥𝐴𝜓}    &   𝐴 ∈ V       𝐵 ∈ V
 
Theoremrab2ex 4210* A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
𝐵 = {𝑦𝐴𝜓}    &   𝐴 ∈ V       {𝑥𝐵𝜑} ∈ V
 
Theoremelssabg 4211* Membership in a class abstraction involving a subset. Unlike elabg 2929, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐵𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
 
Theoreminteximm 4212* The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
(∃𝑥 𝑥𝐴 𝐴 ∈ V)
 
Theoremintexr 4213 If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.)
( 𝐴 ∈ V → 𝐴 ≠ ∅)
 
Theoremintnexr 4214 If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.)
( 𝐴 = V → ¬ 𝐴 ∈ V)
 
Theoremintexabim 4215 The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
(∃𝑥𝜑 {𝑥𝜑} ∈ V)
 
Theoremintexrabim 4216 The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
(∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)
 
Theoremiinexgm 4217* The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Jim Kingdon, 28-Aug-2018.)
((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
 
Theoreminuni 4218* The intersection of a union 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.)
( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
 
Theoremelpw2g 4219 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
(𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
 
Theoremelpw2 4220 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
𝐵 ∈ V       (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
 
Theoremelpwi2 4221 Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
𝐵𝑉    &   𝐴𝐵       𝐴 ∈ 𝒫 𝐵
 
Theorempwnss 4222 The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
 
Theorempwne 4223 No set equals its power set. The sethood antecedent is necessary; compare pwv 3866. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
(𝐴𝑉 → 𝒫 𝐴𝐴)
 
Theoremrepizf2lem 4224 Lemma for repizf2 4225. If we have a function-like proposition which provides at most one value of 𝑦 for each 𝑥 in a set 𝑤, we can change "at most one" to "exactly one" by restricting the values of 𝑥 to those values for which the proposition provides a value of 𝑦. (Contributed by Jim Kingdon, 7-Sep-2018.)
(∀𝑥𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑)
 
Theoremrepizf2 4225* Replacement. This version of replacement is stronger than repizf 4179 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4179 with ax-sep 4181. Another variation would be 𝑥𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝑤𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
𝑧𝜑       (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑)
 
2.2.5  Theorems requiring empty set existence
 
Theoremclass2seteq 4226* Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
(𝐴𝑉 → {𝑥𝐴𝐴 ∈ V} = 𝐴)
 
Theorem0elpw 4227 Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
∅ ∈ 𝒫 𝐴
 
Theorem0nep0 4228 The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
∅ ≠ {∅}
 
Theorem0inp0 4229 Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.)
(𝐴 = ∅ → ¬ 𝐴 = {∅})
 
Theoremunidif0 4230 The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
(𝐴 ∖ {∅}) = 𝐴
 
Theoremiin0imm 4231* An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
(∃𝑦 𝑦𝐴 𝑥𝐴 ∅ = ∅)
 
Theoremiin0r 4232* If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
 
Theoremintv 4233 The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
V = ∅
 
Theoremaxpweq 4234* Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4237 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
𝐴 ∈ V       (𝒫 𝐴 ∈ V ↔ ∃𝑥𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
 
2.2.6  Collection principle
 
Theorembnd 4235* A very strong generalization of the Axiom of Replacement (compare zfrep6 4180). Its strength lies in the rather profound fact that 𝜑(𝑥, 𝑦) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. In the context of IZF, it is just a slight variation of ax-coll 4178. (Contributed by NM, 17-Oct-2004.)
(∀𝑥𝑧𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
 
Theorembnd2 4236* A variant of the Boundedness Axiom bnd 4235 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.)
𝐴 ∈ V       (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
 
2.3  IZF Set Theory - add the Axioms of Power Sets and Pairing
 
2.3.1  Introduce the Axiom of Power Sets
 
Axiomax-pow 4237* Axiom of Power Sets. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the power set of a given set 𝑥 i.e. contains every subset of 𝑥. This is Axiom 8 of [Crosilla] p. "Axioms of CZF and IZF" except (a) unnecessary quantifiers are removed, and (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4184).

The variant axpow2 4239 uses explicit subset notation. A version using class notation is pwex 4246. (Contributed by NM, 5-Aug-1993.)

𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
 
Theoremzfpow 4238* Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥)
 
Theoremaxpow2 4239* A variant of the Axiom of Power Sets ax-pow 4237 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
𝑦𝑧(𝑧𝑥𝑧𝑦)
 
Theoremaxpow3 4240* A variant of the Axiom of Power Sets ax-pow 4237. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
𝑦𝑧(𝑧𝑥𝑧𝑦)
 
Theoremel 4241* Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑦 𝑥𝑦
 
Theoremvpwex 4242 Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4243 from vpwex 4242. (Revised by BJ, 10-Aug-2022.)
𝒫 𝑥 ∈ V
 
Theorempwexg 4243 Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.)
(𝐴𝑉 → 𝒫 𝐴 ∈ V)
 
Theorempwexd 4244 Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴𝑉)       (𝜑 → 𝒫 𝐴 ∈ V)
 
Theoremabssexg 4245* Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴𝑉 → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
 
Theorempwex 4246 Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
𝐴 ∈ V       𝒫 𝐴 ∈ V
 
Theoremsnexg 4247 A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
(𝐴𝑉 → {𝐴} ∈ V)
 
Theoremsnex 4248 A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
𝐴 ∈ V       {𝐴} ∈ V
 
Theoremsnexprc 4249 A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
𝐴 ∈ V → {𝐴} ∈ V)
 
Theoremnotnotsnex 4250 A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
¬ ¬ {𝐴} ∈ V
 
Theoremp0ex 4251 The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
{∅} ∈ V
 
Theorempp0ex 4252 {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
{∅, {∅}} ∈ V
 
Theoremord3ex 4253 The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.)
{∅, {∅}, {∅, {∅}}} ∈ V
 
Theoremdtruarb 4254* At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4628 in which we are given a set 𝑦 and go from there to a set 𝑥 which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.)
𝑥𝑦 ¬ 𝑥 = 𝑦
 
Theorempwuni 4255 A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
𝐴 ⊆ 𝒫 𝐴
 
Theoremundifexmid 4256* Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3552 and undifdcss 7053 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦)       (𝜑 ∨ ¬ 𝜑)
 
2.3.2  A notation for excluded middle
 
Syntaxwem 4257 Formula for an abbreviation of excluded middle.
wff EXMID
 
Definitiondf-exmid 4258 The expression EXMID will be used as a readable shorthand for any form of the law of the excluded middle; this is a useful shorthand largely because it hides statements of the form "for any proposition" in a system which can only quantify over sets, not propositions.

To see how this compares with other ways of expressing excluded middle, compare undifexmid 4256 with exmidundif 4269. The former may be more recognizable as excluded middle because it is in terms of propositions, and the proof may be easier to follow for much the same reason (it just has to show 𝜑 and ¬ 𝜑 in the the relevant parts of the proof). The latter, however, has the key advantage of being able to prove both directions of the biconditional. To state that excluded middle implies a proposition is hard to do gracefully without EXMID, because there is no way to write a hypothesis 𝜑 ∨ ¬ 𝜑 for an arbitrary proposition; instead the hypothesis would need to be the particular instance of excluded middle which that proof needs. Or to say it another way, EXMID implies DECID 𝜑 by exmidexmid 4259 but there is no good way to express the converse.

This definition and how we use it is easiest to understand (and most appropriate to assign the name "excluded middle" to) if we assume ax-sep 4181, in which case EXMID means that all propositions are decidable (see exmidexmid 4259 and notice that it relies on ax-sep 4181). If we instead work with ax-bdsep 16157, EXMID as defined here means that all bounded propositions are decidable.

(Contributed by Mario Carneiro and Jim Kingdon, 18-Jun-2022.)

(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
 
Theoremexmidexmid 4259 EXMID implies that an arbitrary proposition is decidable. That is, EXMID captures the usual meaning of excluded middle when stated in terms of propositions.

To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 847, peircedc 918, or condc 857.

(Contributed by Jim Kingdon, 18-Jun-2022.)

(EXMIDDECID 𝜑)
 
Theoremss1o0el1 4260 A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
(𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
 
Theoremexmid01 4261 Excluded middle is equivalent to saying any subset of {∅} is either or {∅}. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
 
Theorempwntru 4262 A slight strengthening of pwtrufal 16274. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅)
 
Theoremexmid1dc 4263* A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4256 or ordtriexmid 4590. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
((𝜑𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})       (𝜑EXMID)
 
Theoremexmidn0m 4264* Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.)
(EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
 
Theoremexmidsssn 4265* Excluded middle is equivalent to the biconditionalized version of sssnr 3810 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
(EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
 
Theoremexmidsssnc 4266* Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4261 but lets you choose any set as the element of the singleton rather than just . It is similar to exmidsssn 4265 but for a particular set 𝐵 rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
(𝐵𝑉 → (EXMID ↔ ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
 
Theoremexmid0el 4267 Excluded middle is equivalent to decidability of being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)
 
Theoremexmidel 4268* Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥𝑦DECID 𝑥𝑦)
 
Theoremexmidundif 4269* Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3552 and undifdcss 7053 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
 
Theoremexmidundifim 4270* Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4269 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.)
(EXMID ↔ ∀𝑥𝑦(𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) = 𝑦))
 
Theoremexmid1stab 4271* If every proposition is stable, excluded middle follows. We are thinking of 𝑥 as a proposition and 𝑥 = {∅} as "𝑥 is true". (Contributed by Jim Kingdon, 28-Nov-2023.)
((𝜑𝑥 ⊆ {∅}) → STAB 𝑥 = {∅})       (𝜑EXMID)
 
2.3.3  Axiom of Pairing
 
Axiomax-pr 4272* The Axiom of Pairing of IZF set theory. Axiom 2 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, and (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4184). (Contributed by NM, 14-Nov-2006.)
𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
 
Theoremzfpair2 4273 Derive the abbreviated version of the Axiom of Pairing from ax-pr 4272. (Contributed by NM, 14-Nov-2006.)
{𝑥, 𝑦} ∈ V
 
Theoremprexg 4274 The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3756, prprc1 3754, and prprc2 3755. (Contributed by Jim Kingdon, 16-Sep-2018.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
 
Theoremsnelpwg 4275 A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 4189. (Revised by BJ, 17-Jan-2025.)
(𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
 
Theoremsnelpwi 4276 A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
(𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
 
Theoremsnelpw 4277 A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
𝐴 ∈ V       (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
 
Theoremprelpw 4278 An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.)
((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
 
Theoremprelpwi 4279 A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.)
((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)
 
Theoremrext 4280* A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
(∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
 
Theoremsspwb 4281 Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
(𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoremunipw 4282 A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
𝒫 𝐴 = 𝐴
 
Theorempwel 4283 Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
(𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)
 
Theorempwtr 4284 A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
(Tr 𝐴 ↔ Tr 𝒫 𝐴)
 
Theoremssextss 4285* An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
(𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremssext 4286* An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
(𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremnssssr 4287* Negation of subclass relationship. Compare nssr 3264. (Contributed by Jim Kingdon, 17-Sep-2018.)
(∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ 𝐴𝐵)
 
Theorempweqb 4288 Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
(𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵)
 
Theoremintid 4289* The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
𝐴 ∈ V        {𝑥𝐴𝑥} = {𝐴}
 
Theoremeuabex 4290 The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
(∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
 
Theoremmss 4291* An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
(∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥))
 
Theoremexss 4292* Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
(∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
 
Theoremopexg 4293 An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
 
Theoremopex 4294 An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ∈ V
 
Theoremotexg 4295 An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
((𝐴𝑈𝐵𝑉𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
 
Theoremelop 4296 An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
 
Theoremopi1 4297 One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝐴} ∈ ⟨𝐴, 𝐵
 
Theoremopi2 4298 One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
 
2.3.4  Ordered pair theorem
 
Theoremopm 4299* An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.)
(∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theoremopnzi 4300 An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4299). (Contributed by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ≠ ∅
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >