| Intuitionistic Logic Explorer Theorem List (p. 43 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ssexi 4201 | The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | ssexg 4202 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
| Theorem | ssexd 4203 | A subclass of a set is a set. Deduction form of ssexg 4202. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | difexg 4204 | Existence of a difference. (Contributed by NM, 26-May-1998.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | ||
| Theorem | zfausab 4205* | Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | rabexg 4206* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | rabex 4207* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V | ||
| Theorem | rabexd 4208* | Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4209. (Contributed by AV, 16-Jul-2019.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | rabex2 4209* | Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐵 ∈ V | ||
| Theorem | rab2ex 4210* | A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V | ||
| Theorem | elssabg 4211* | Membership in a class abstraction involving a subset. Unlike elabg 2929, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) | ||
| Theorem | inteximm 4212* | The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) | ||
| Theorem | intexr 4213 | If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) | ||
| Theorem | intnexr 4214 | If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) | ||
| Theorem | intexabim 4215 | The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | intexrabim 4216 | The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | iinexgm 4217* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Jim Kingdon, 28-Aug-2018.) |
| ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | inuni 4218* | The intersection of a union ∪ 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.) |
| ⊢ (∪ 𝐴 ∩ 𝐵) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)} | ||
| Theorem | elpw2g 4219 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | elpw2 4220 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | elpwi2 4221 | Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
| ⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ 𝒫 𝐵 | ||
| Theorem | pwnss 4222 | The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | ||
| Theorem | pwne 4223 | No set equals its power set. The sethood antecedent is necessary; compare pwv 3866. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) | ||
| Theorem | repizf2lem 4224 | Lemma for repizf2 4225. If we have a function-like proposition which provides at most one value of 𝑦 for each 𝑥 in a set 𝑤, we can change "at most one" to "exactly one" by restricting the values of 𝑥 to those values for which the proposition provides a value of 𝑦. (Contributed by Jim Kingdon, 7-Sep-2018.) |
| ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) | ||
| Theorem | repizf2 4225* | Replacement. This version of replacement is stronger than repizf 4179 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4179 with ax-sep 4181. Another variation would be ∀𝑥 ∈ 𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) | ||
| Theorem | class2seteq 4226* | Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) | ||
| Theorem | 0elpw 4227 | Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| ⊢ ∅ ∈ 𝒫 𝐴 | ||
| Theorem | 0nep0 4228 | The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∅ ≠ {∅} | ||
| Theorem | 0inp0 4229 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.) |
| ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | ||
| Theorem | unidif0 4230 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
| ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 | ||
| Theorem | iin0imm 4231* | An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | ||
| Theorem | iin0r 4232* | If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) | ||
| Theorem | intv 4233 | The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
| ⊢ ∩ V = ∅ | ||
| Theorem | axpweq 4234* | Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4237 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) | ||
| Theorem | bnd 4235* | A very strong generalization of the Axiom of Replacement (compare zfrep6 4180). Its strength lies in the rather profound fact that 𝜑(𝑥, 𝑦) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. In the context of IZF, it is just a slight variation of ax-coll 4178. (Contributed by NM, 17-Oct-2004.) |
| ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
| Theorem | bnd2 4236* | A variant of the Boundedness Axiom bnd 4235 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) | ||
| Axiom | ax-pow 4237* |
Axiom of Power Sets. An axiom of Intuitionistic Zermelo-Fraenkel set
theory. It states that a set 𝑦 exists that includes the power set
of a given set 𝑥 i.e. contains every subset of 𝑥. This
is
Axiom 8 of [Crosilla] p. "Axioms
of CZF and IZF" except (a) unnecessary
quantifiers are removed, and (b) Crosilla has a biconditional rather
than an implication (but the two are equivalent by bm1.3ii 4184).
The variant axpow2 4239 uses explicit subset notation. A version using class notation is pwex 4246. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfpow 4238* | Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpow2 4239* | A variant of the Axiom of Power Sets ax-pow 4237 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | ||
| Theorem | axpow3 4240* | A variant of the Axiom of Power Sets ax-pow 4237. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | ||
| Theorem | el 4241* | Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | vpwex 4242 | Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4243 from vpwex 4242. (Revised by BJ, 10-Aug-2022.) |
| ⊢ 𝒫 𝑥 ∈ V | ||
| Theorem | pwexg 4243 | Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | ||
| Theorem | pwexd 4244 | Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ V) | ||
| Theorem | abssexg 4245* | Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | ||
| Theorem | pwex 4246 | Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝒫 𝐴 ∈ V | ||
| Theorem | snexg 4247 | A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | snex 4248 | A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ V | ||
| Theorem | snexprc 4249 | A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) | ||
| Theorem | notnotsnex 4250 | A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.) |
| ⊢ ¬ ¬ {𝐴} ∈ V | ||
| Theorem | p0ex 4251 | The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| ⊢ {∅} ∈ V | ||
| Theorem | pp0ex 4252 | {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.) |
| ⊢ {∅, {∅}} ∈ V | ||
| Theorem | ord3ex 4253 | The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
| ⊢ {∅, {∅}, {∅, {∅}}} ∈ V | ||
| Theorem | dtruarb 4254* | At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4628 in which we are given a set 𝑦 and go from there to a set 𝑥 which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.) |
| ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | ||
| Theorem | pwuni 4255 | A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | ||
| Theorem | undifexmid 4256* | Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3552 and undifdcss 7053 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
| ⊢ (𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Syntax | wem 4257 | Formula for an abbreviation of excluded middle. |
| wff EXMID | ||
| Definition | df-exmid 4258 |
The expression EXMID will be used as a
readable shorthand for any
form of the law of the excluded middle; this is a useful shorthand
largely because it hides statements of the form "for any
proposition" in
a system which can only quantify over sets, not propositions.
To see how this compares with other ways of expressing excluded middle, compare undifexmid 4256 with exmidundif 4269. The former may be more recognizable as excluded middle because it is in terms of propositions, and the proof may be easier to follow for much the same reason (it just has to show 𝜑 and ¬ 𝜑 in the the relevant parts of the proof). The latter, however, has the key advantage of being able to prove both directions of the biconditional. To state that excluded middle implies a proposition is hard to do gracefully without EXMID, because there is no way to write a hypothesis 𝜑 ∨ ¬ 𝜑 for an arbitrary proposition; instead the hypothesis would need to be the particular instance of excluded middle which that proof needs. Or to say it another way, EXMID implies DECID 𝜑 by exmidexmid 4259 but there is no good way to express the converse. This definition and how we use it is easiest to understand (and most appropriate to assign the name "excluded middle" to) if we assume ax-sep 4181, in which case EXMID means that all propositions are decidable (see exmidexmid 4259 and notice that it relies on ax-sep 4181). If we instead work with ax-bdsep 16157, EXMID as defined here means that all bounded propositions are decidable. (Contributed by Mario Carneiro and Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | ||
| Theorem | exmidexmid 4259 |
EXMID implies that an arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 847, peircedc 918, or condc 857. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID → DECID 𝜑) | ||
| Theorem | ss1o0el1 4260 | A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
| ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) | ||
| Theorem | exmid01 4261 | Excluded middle is equivalent to saying any subset of {∅} is either ∅ or {∅}. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | ||
| Theorem | pwntru 4262 | A slight strengthening of pwtrufal 16274. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.) |
| ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) | ||
| Theorem | exmid1dc 4263* | A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4256 or ordtriexmid 4590. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) ⇒ ⊢ (𝜑 → EXMID) | ||
| Theorem | exmidn0m 4264* | Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| ⊢ (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) | ||
| Theorem | exmidsssn 4265* | Excluded middle is equivalent to the biconditionalized version of sssnr 3810 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) | ||
| Theorem | exmidsssnc 4266* | Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4261 but lets you choose any set as the element of the singleton rather than just ∅. It is similar to exmidsssn 4265 but for a particular set 𝐵 rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.) |
| ⊢ (𝐵 ∈ 𝑉 → (EXMID ↔ ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) | ||
| Theorem | exmid0el 4267 | Excluded middle is equivalent to decidability of ∅ being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) | ||
| Theorem | exmidel 4268* | Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) | ||
| Theorem | exmidundif 4269* | Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3552 and undifdcss 7053 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) | ||
| Theorem | exmidundifim 4270* | Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4269 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) | ||
| Theorem | exmid1stab 4271* | If every proposition is stable, excluded middle follows. We are thinking of 𝑥 as a proposition and 𝑥 = {∅} as "𝑥 is true". (Contributed by Jim Kingdon, 28-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) ⇒ ⊢ (𝜑 → EXMID) | ||
| Axiom | ax-pr 4272* | The Axiom of Pairing of IZF set theory. Axiom 2 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, and (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4184). (Contributed by NM, 14-Nov-2006.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | zfpair2 4273 | Derive the abbreviated version of the Axiom of Pairing from ax-pr 4272. (Contributed by NM, 14-Nov-2006.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | prexg 4274 | The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3756, prprc1 3754, and prprc2 3755. (Contributed by Jim Kingdon, 16-Sep-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | ||
| Theorem | snelpwg 4275 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 4189. (Revised by BJ, 17-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | ||
| Theorem | snelpwi 4276 | A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpw 4277 | A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | prelpw 4278 | An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | ||
| Theorem | prelpwi 4279 | A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) | ||
| Theorem | rext 4280* | A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
| ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) | ||
| Theorem | sspwb 4281 | Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||
| Theorem | unipw 4282 | A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| ⊢ ∪ 𝒫 𝐴 = 𝐴 | ||
| Theorem | pwel 4283 | Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) | ||
| Theorem | pwtr 4284 | A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) | ||
| Theorem | ssextss 4285* | An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
| Theorem | ssext 4286* | An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | ||
| Theorem | nssssr 4287* | Negation of subclass relationship. Compare nssr 3264. (Contributed by Jim Kingdon, 17-Sep-2018.) |
| ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) | ||
| Theorem | pweqb 4288 | Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) | ||
| Theorem | intid 4289* | The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} | ||
| Theorem | euabex 4290 | The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | mss 4291* | An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥)) | ||
| Theorem | exss 4292* | Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) | ||
| Theorem | opexg 4293 | An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | ||
| Theorem | opex 4294 | An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ∈ V | ||
| Theorem | otexg 4295 | An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 〈𝐴, 𝐵, 𝐶〉 ∈ V) | ||
| Theorem | elop 4296 | An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) | ||
| Theorem | opi1 4297 | One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opi2 4298 | One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opm 4299* | An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | opnzi 4300 | An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4299). (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ≠ ∅ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |