| Intuitionistic Logic Explorer Theorem List (p. 43 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | intexrabim 4201 | The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | iinexgm 4202* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Jim Kingdon, 28-Aug-2018.) |
| ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | inuni 4203* | The intersection of a union ∪ 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.) |
| ⊢ (∪ 𝐴 ∩ 𝐵) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)} | ||
| Theorem | elpw2g 4204 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | elpw2 4205 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | elpwi2 4206 | Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
| ⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ 𝒫 𝐵 | ||
| Theorem | pwnss 4207 | The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | ||
| Theorem | pwne 4208 | No set equals its power set. The sethood antecedent is necessary; compare pwv 3851. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) | ||
| Theorem | repizf2lem 4209 | Lemma for repizf2 4210. If we have a function-like proposition which provides at most one value of 𝑦 for each 𝑥 in a set 𝑤, we can change "at most one" to "exactly one" by restricting the values of 𝑥 to those values for which the proposition provides a value of 𝑦. (Contributed by Jim Kingdon, 7-Sep-2018.) |
| ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) | ||
| Theorem | repizf2 4210* | Replacement. This version of replacement is stronger than repizf 4164 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4164 with ax-sep 4166. Another variation would be ∀𝑥 ∈ 𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) | ||
| Theorem | class2seteq 4211* | Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) | ||
| Theorem | 0elpw 4212 | Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| ⊢ ∅ ∈ 𝒫 𝐴 | ||
| Theorem | 0nep0 4213 | The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∅ ≠ {∅} | ||
| Theorem | 0inp0 4214 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.) |
| ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | ||
| Theorem | unidif0 4215 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
| ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 | ||
| Theorem | iin0imm 4216* | An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | ||
| Theorem | iin0r 4217* | If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) | ||
| Theorem | intv 4218 | The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
| ⊢ ∩ V = ∅ | ||
| Theorem | axpweq 4219* | Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4222 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) | ||
| Theorem | bnd 4220* | A very strong generalization of the Axiom of Replacement (compare zfrep6 4165). Its strength lies in the rather profound fact that 𝜑(𝑥, 𝑦) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. In the context of IZF, it is just a slight variation of ax-coll 4163. (Contributed by NM, 17-Oct-2004.) |
| ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
| Theorem | bnd2 4221* | A variant of the Boundedness Axiom bnd 4220 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) | ||
| Axiom | ax-pow 4222* |
Axiom of Power Sets. An axiom of Intuitionistic Zermelo-Fraenkel set
theory. It states that a set 𝑦 exists that includes the power set
of a given set 𝑥 i.e. contains every subset of 𝑥. This
is
Axiom 8 of [Crosilla] p. "Axioms
of CZF and IZF" except (a) unnecessary
quantifiers are removed, and (b) Crosilla has a biconditional rather
than an implication (but the two are equivalent by bm1.3ii 4169).
The variant axpow2 4224 uses explicit subset notation. A version using class notation is pwex 4231. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfpow 4223* | Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpow2 4224* | A variant of the Axiom of Power Sets ax-pow 4222 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | ||
| Theorem | axpow3 4225* | A variant of the Axiom of Power Sets ax-pow 4222. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | ||
| Theorem | el 4226* | Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | vpwex 4227 | Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4228 from vpwex 4227. (Revised by BJ, 10-Aug-2022.) |
| ⊢ 𝒫 𝑥 ∈ V | ||
| Theorem | pwexg 4228 | Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | ||
| Theorem | pwexd 4229 | Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ V) | ||
| Theorem | abssexg 4230* | Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | ||
| Theorem | pwex 4231 | Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝒫 𝐴 ∈ V | ||
| Theorem | snexg 4232 | A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | snex 4233 | A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ V | ||
| Theorem | snexprc 4234 | A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) | ||
| Theorem | notnotsnex 4235 | A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.) |
| ⊢ ¬ ¬ {𝐴} ∈ V | ||
| Theorem | p0ex 4236 | The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| ⊢ {∅} ∈ V | ||
| Theorem | pp0ex 4237 | {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.) |
| ⊢ {∅, {∅}} ∈ V | ||
| Theorem | ord3ex 4238 | The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
| ⊢ {∅, {∅}, {∅, {∅}}} ∈ V | ||
| Theorem | dtruarb 4239* | At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4611 in which we are given a set 𝑦 and go from there to a set 𝑥 which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.) |
| ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | ||
| Theorem | pwuni 4240 | A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | ||
| Theorem | undifexmid 4241* | Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3542 and undifdcss 7027 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
| ⊢ (𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Syntax | wem 4242 | Formula for an abbreviation of excluded middle. |
| wff EXMID | ||
| Definition | df-exmid 4243 |
The expression EXMID will be used as a
readable shorthand for any
form of the law of the excluded middle; this is a useful shorthand
largely because it hides statements of the form "for any
proposition" in
a system which can only quantify over sets, not propositions.
To see how this compares with other ways of expressing excluded middle, compare undifexmid 4241 with exmidundif 4254. The former may be more recognizable as excluded middle because it is in terms of propositions, and the proof may be easier to follow for much the same reason (it just has to show 𝜑 and ¬ 𝜑 in the the relevant parts of the proof). The latter, however, has the key advantage of being able to prove both directions of the biconditional. To state that excluded middle implies a proposition is hard to do gracefully without EXMID, because there is no way to write a hypothesis 𝜑 ∨ ¬ 𝜑 for an arbitrary proposition; instead the hypothesis would need to be the particular instance of excluded middle which that proof needs. Or to say it another way, EXMID implies DECID 𝜑 by exmidexmid 4244 but there is no good way to express the converse. This definition and how we use it is easiest to understand (and most appropriate to assign the name "excluded middle" to) if we assume ax-sep 4166, in which case EXMID means that all propositions are decidable (see exmidexmid 4244 and notice that it relies on ax-sep 4166). If we instead work with ax-bdsep 15894, EXMID as defined here means that all bounded propositions are decidable. (Contributed by Mario Carneiro and Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | ||
| Theorem | exmidexmid 4244 |
EXMID implies that an arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 845, peircedc 916, or condc 855. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID → DECID 𝜑) | ||
| Theorem | ss1o0el1 4245 | A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
| ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) | ||
| Theorem | exmid01 4246 | Excluded middle is equivalent to saying any subset of {∅} is either ∅ or {∅}. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | ||
| Theorem | pwntru 4247 | A slight strengthening of pwtrufal 16008. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.) |
| ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) | ||
| Theorem | exmid1dc 4248* | A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4241 or ordtriexmid 4573. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) ⇒ ⊢ (𝜑 → EXMID) | ||
| Theorem | exmidn0m 4249* | Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| ⊢ (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) | ||
| Theorem | exmidsssn 4250* | Excluded middle is equivalent to the biconditionalized version of sssnr 3796 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) | ||
| Theorem | exmidsssnc 4251* | Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4246 but lets you choose any set as the element of the singleton rather than just ∅. It is similar to exmidsssn 4250 but for a particular set 𝐵 rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.) |
| ⊢ (𝐵 ∈ 𝑉 → (EXMID ↔ ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) | ||
| Theorem | exmid0el 4252 | Excluded middle is equivalent to decidability of ∅ being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) | ||
| Theorem | exmidel 4253* | Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) | ||
| Theorem | exmidundif 4254* | Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3542 and undifdcss 7027 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) | ||
| Theorem | exmidundifim 4255* | Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4254 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) | ||
| Theorem | exmid1stab 4256* | If every proposition is stable, excluded middle follows. We are thinking of 𝑥 as a proposition and 𝑥 = {∅} as "𝑥 is true". (Contributed by Jim Kingdon, 28-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) ⇒ ⊢ (𝜑 → EXMID) | ||
| Axiom | ax-pr 4257* | The Axiom of Pairing of IZF set theory. Axiom 2 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, and (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4169). (Contributed by NM, 14-Nov-2006.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | zfpair2 4258 | Derive the abbreviated version of the Axiom of Pairing from ax-pr 4257. (Contributed by NM, 14-Nov-2006.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | prexg 4259 | The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3744, prprc1 3742, and prprc2 3743. (Contributed by Jim Kingdon, 16-Sep-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | ||
| Theorem | snelpwi 4260 | A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpw 4261 | A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | prelpwi 4262 | A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) | ||
| Theorem | rext 4263* | A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
| ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) | ||
| Theorem | sspwb 4264 | Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||
| Theorem | unipw 4265 | A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| ⊢ ∪ 𝒫 𝐴 = 𝐴 | ||
| Theorem | pwel 4266 | Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) | ||
| Theorem | pwtr 4267 | A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) | ||
| Theorem | ssextss 4268* | An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
| Theorem | ssext 4269* | An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | ||
| Theorem | nssssr 4270* | Negation of subclass relationship. Compare nssr 3254. (Contributed by Jim Kingdon, 17-Sep-2018.) |
| ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) | ||
| Theorem | pweqb 4271 | Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) | ||
| Theorem | intid 4272* | The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} | ||
| Theorem | euabex 4273 | The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | mss 4274* | An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥)) | ||
| Theorem | exss 4275* | Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) | ||
| Theorem | opexg 4276 | An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | ||
| Theorem | opex 4277 | An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ∈ V | ||
| Theorem | otexg 4278 | An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 〈𝐴, 𝐵, 𝐶〉 ∈ V) | ||
| Theorem | elop 4279 | An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) | ||
| Theorem | opi1 4280 | One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opi2 4281 | One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opm 4282* | An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | opnzi 4283 | An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4282). (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ≠ ∅ | ||
| Theorem | opth1 4284 | Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) | ||
| Theorem | opth 4285 | The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | opthg 4286 | Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | opthg2 4287 | Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | opth2 4288 | Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | otth2 4289 | Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
| Theorem | otth 4290 | Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
| Theorem | eqvinop 4291* | A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐶〉)) | ||
| Theorem | copsexg 4292* | Substitution of class 𝐴 for ordered pair 〈𝑥, 𝑦〉. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | ||
| Theorem | copsex2t 4293* | Closed theorem form of copsex2g 4294. (Contributed by NM, 17-Feb-2013.) |
| ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | copsex2g 4294* | Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | copsex4g 4295* | An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑧, 𝑤〉) ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | 0nelop 4296 | A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opwo0id 4297 | An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
| ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) | ||
| Theorem | opeqex 4298 | Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
| ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) | ||
| Theorem | opcom 4299 | An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ 𝐴 = 𝐵) | ||
| Theorem | moop2 4300* | "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |