HomeHome Intuitionistic Logic Explorer
Theorem List (p. 43 of 138)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopex 4201 An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ∈ V
 
Theoremotexg 4202 An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
((𝐴𝑈𝐵𝑉𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
 
Theoremelop 4203 An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
 
Theoremopi1 4204 One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝐴} ∈ ⟨𝐴, 𝐵
 
Theoremopi2 4205 One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
 
2.3.4  Ordered pair theorem
 
Theoremopm 4206* An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.)
(∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theoremopnzi 4207 An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4206). (Contributed by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ≠ ∅
 
Theoremopth1 4208 Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
 
Theoremopth 4209 The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremopthg 4210 Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremopthg2 4211 Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐶𝑉𝐷𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremopth2 4212 Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
𝐶 ∈ V    &   𝐷 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremotth2 4213 Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝑅 ∈ V       (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
 
Theoremotth 4214 Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝑅 ∈ V       (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
 
Theoremeqvinop 4215* A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
 
Theoremcopsexg 4216* Substitution of class 𝐴 for ordered pair 𝑥, 𝑦. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.)
(𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
 
Theoremcopsex2t 4217* Closed theorem form of copsex2g 4218. (Contributed by NM, 17-Feb-2013.)
((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
 
Theoremcopsex2g 4218* Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
 
Theoremcopsex4g 4219* An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.)
(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → (𝜑𝜓))       (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ 𝜓))
 
Theorem0nelop 4220 A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
¬ ∅ ∈ ⟨𝐴, 𝐵
 
Theoremopeqex 4221 Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
(⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
 
Theoremopcom 4222 An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)
 
Theoremmoop2 4223* "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐵 ∈ V       ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
 
Theoremopeqsn 4224 Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴}))
 
Theoremopeqpr 4225 Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
 
Theoremeuotd 4226* Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶 ∈ V)    &   (𝜑 → (𝜓 ↔ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)))       (𝜑 → ∃!𝑥𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
 
Theoremuniop 4227 The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ = {𝐴, 𝐵}
 
Theoremuniopel 4228 Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)
 
2.3.5  Ordered-pair class abstractions (cont.)
 
Theoremopabid 4229 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
 
Theoremelopab 4230* Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
(𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
 
TheoremopelopabsbALT 4231* The law of concretion in terms of substitutions. Less general than opelopabsb 4232, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
 
Theoremopelopabsb 4232* The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.)
(⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
 
Theorembrabsb 4233* The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       (𝐴𝑅𝐵[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
 
Theoremopelopabt 4234* Closed theorem form of opelopab 4243. (Contributed by NM, 19-Feb-2013.)
((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
 
Theoremopelopabga 4235* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓))
 
Theorembrabga 4236* The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
 
Theoremopelopab2a 4237* Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
 
Theoremopelopaba 4238* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
 
Theorembraba 4239* The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       (𝐴𝑅𝐵𝜓)
 
Theoremopelopabg 4240* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
 
Theorembrabg 4241* The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
 
Theoremopelopab2 4242* Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜒))
 
Theoremopelopab 4243* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 16-May-1995.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
 
Theorembrab 4244* The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       (𝐴𝑅𝐵𝜒)
 
Theoremopelopabaf 4245* The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4243 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
𝑥𝜓    &   𝑦𝜓    &   𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
 
Theoremopelopabf 4246* The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4243 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by NM, 19-Dec-2008.)
𝑥𝜓    &   𝑦𝜒    &   𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
 
Theoremssopab2 4247 Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
(∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
 
Theoremssopab2b 4248 Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))
 
Theoremssopab2i 4249 Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.)
(𝜑𝜓)       {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}
 
Theoremssopab2dv 4250* Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
(𝜑 → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 
Theoremeqopab2b 4251 Equivalence of ordered pair abstraction equality and biconditional. (Contributed by Mario Carneiro, 4-Jan-2017.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))
 
Theoremopabm 4252* Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.)
(∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝜑)
 
Theoremiunopab 4253* Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
 
2.3.6  Power class of union and intersection
 
Theorempwin 4254 The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)
 
Theorempwunss 4255 The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
(𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
 
Theorempwssunim 4256 The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.)
((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))
 
Theorempwundifss 4257 Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.)
((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴𝐵)
 
Theorempwunim 4258 The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.)
((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵))
 
2.3.7  Epsilon and identity relations
 
Syntaxcep 4259 Extend class notation to include the epsilon relation.
class E
 
Syntaxcid 4260 Extend the definition of a class to include identity relation.
class I
 
Definitiondf-eprel 4261* Define the epsilon relation. Similar to Definition 6.22 of [TakeutiZaring] p. 30. The epsilon relation and set membership are the same, that is, (𝐴 E 𝐵𝐴𝐵) when 𝐵 is a set by epelg 4262. Thus, 5 E { 1 , 5 }. (Contributed by NM, 13-Aug-1995.)
E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
 
Theoremepelg 4262 The epsilon relation and membership are the same. General version of epel 4264. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
 
Theoremepelc 4263 The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.)
𝐵 ∈ V       (𝐴 E 𝐵𝐴𝐵)
 
Theoremepel 4264 The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
(𝑥 E 𝑦𝑥𝑦)
 
Definitiondf-id 4265* Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5. (Contributed by NM, 13-Aug-1995.)
I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
 
2.3.8  Partial and total orderings

We have not yet defined relations (df-rel 4605), but here we introduce a few related notions we will use to develop ordinals. The class variable 𝑅 is no different from other class variables, but it reminds us that typically it represents what we will later call a "relation".

 
Syntaxwpo 4266 Extend wff notation to include the strict partial ordering predicate. Read: ' 𝑅 is a partial order on 𝐴.'
wff 𝑅 Po 𝐴
 
Syntaxwor 4267 Extend wff notation to include the strict linear ordering predicate. Read: ' 𝑅 orders 𝐴.'
wff 𝑅 Or 𝐴
 
Definitiondf-po 4268* Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po 𝐴 means 𝑅 is a partial order on 𝐴. (Contributed by NM, 16-Mar-1997.)
(𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
 
Definitiondf-iso 4269* Define the strict linear order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. The property 𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
 
Theoremposs 4270 Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
(𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
 
Theorempoeq1 4271 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 Po 𝐴𝑆 Po 𝐴))
 
Theorempoeq2 4272 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
(𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
 
Theoremnfpo 4273 Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Po 𝐴
 
Theoremnfso 4274 Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Or 𝐴
 
Theorempocl 4275 Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.)
(𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
 
Theoremispod 4276* Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.)
((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))       (𝜑𝑅 Po 𝐴)
 
Theoremswopolem 4277* Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))       ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
 
Theoremswopo 4278* A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.)
((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦))    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))       (𝜑𝑅 Po 𝐴)
 
Theorempoirr 4279 A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theorempotr 4280 A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 
Theorempo2nr 4281 A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 
Theorempo3nr 4282 A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
 
Theorempo0 4283 Any relation is a partial ordering of the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑅 Po ∅
 
Theorempofun 4284* A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌}    &   (𝑥 = 𝑦𝑋 = 𝑌)       ((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) → 𝑆 Po 𝐴)
 
Theoremsopo 4285 A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
(𝑅 Or 𝐴𝑅 Po 𝐴)
 
Theoremsoss 4286 Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
 
Theoremsoeq1 4287 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
 
Theoremsoeq2 4288 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
(𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
 
Theoremsonr 4289 A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theoremsotr 4290 A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 
Theoremissod 4291* An irreflexive, transitive, trichotomous relation is a linear ordering (in the sense of df-iso 4269). (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Po 𝐴)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))       (𝜑𝑅 Or 𝐴)
 
Theoremsowlin 4292 A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))
 
Theoremso2nr 4293 A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 
Theoremso3nr 4294 A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
 
Theoremsotricim 4295 One direction of sotritric 4296 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
 
Theoremsotritric 4296 A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.)
𝑅 Or 𝐴    &   ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))       ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
 
Theoremsotritrieq 4297 A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.)
𝑅 Or 𝐴    &   ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))       ((𝐵𝐴𝐶𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
 
Theoremso0 4298 Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑅 Or ∅
 
2.3.9  Founded and set-like relations
 
Syntaxwfrfor 4299 Extend wff notation to include the well-founded predicate.
wff FrFor 𝑅𝐴𝑆
 
Syntaxwfr 4300 Extend wff notation to include the well-founded predicate. Read: ' 𝑅 is a well-founded relation on 𝐴.'
wff 𝑅 Fr 𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800
  Copyright terms: Public domain < Previous  Next >