| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > epelg | GIF version | ||
| Description: The epsilon relation and membership are the same. General version of epel 4382. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| epelg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4083 | . . . 4 ⊢ (𝐴 E 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ E ) | |
| 2 | elopab 4345 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦)) | |
| 3 | vex 2802 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 4 | vex 2802 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | pm3.2i 272 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 6 | opeqex 4335 | . . . . . . . . . 10 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
| 7 | 5, 6 | mpbiri 168 | . . . . . . . . 9 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | 7 | simpld 112 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
| 9 | 8 | adantr 276 | . . . . . . 7 ⊢ ((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
| 10 | 9 | exlimivv 1943 | . . . . . 6 ⊢ (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
| 11 | 2, 10 | sylbi 121 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} → 𝐴 ∈ V) |
| 12 | df-eprel 4379 | . . . . 5 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
| 13 | 11, 12 | eleq2s 2324 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ E → 𝐴 ∈ V) |
| 14 | 1, 13 | sylbi 121 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐴 ∈ V) |
| 15 | 14 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 → 𝐴 ∈ V)) |
| 16 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 17 | 16 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → 𝐴 ∈ V)) |
| 18 | eleq12 2294 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
| 19 | 18, 12 | brabga 4351 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 20 | 19 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵))) |
| 21 | 15, 17, 20 | pm5.21ndd 710 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 〈cop 3669 class class class wbr 4082 {copab 4143 E cep 4377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-eprel 4379 |
| This theorem is referenced by: epelc 4381 efrirr 4443 smoiso 6446 ecidg 6744 ordiso2 7198 ltpiord 7502 |
| Copyright terms: Public domain | W3C validator |