![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > epelg | GIF version |
Description: The epsilon relation and membership are the same. General version of epel 4292. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
epelg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4004 | . . . 4 ⊢ (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E ) | |
2 | elopab 4258 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥 ∈ 𝑦)) | |
3 | vex 2740 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
4 | vex 2740 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | pm3.2i 272 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
6 | opeqex 4249 | . . . . . . . . . 10 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
7 | 5, 6 | mpbiri 168 | . . . . . . . . 9 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 7 | simpld 112 | . . . . . . . 8 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V) |
9 | 8 | adantr 276 | . . . . . . 7 ⊢ ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
10 | 9 | exlimivv 1896 | . . . . . 6 ⊢ (∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
11 | 2, 10 | sylbi 121 | . . . . 5 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} → 𝐴 ∈ V) |
12 | df-eprel 4289 | . . . . 5 ⊢ E = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} | |
13 | 11, 12 | eleq2s 2272 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V) |
14 | 1, 13 | sylbi 121 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐴 ∈ V) |
15 | 14 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 → 𝐴 ∈ V)) |
16 | elex 2748 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
17 | 16 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → 𝐴 ∈ V)) |
18 | eleq12 2242 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
19 | 18, 12 | brabga 4264 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
20 | 19 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵))) |
21 | 15, 17, 20 | pm5.21ndd 705 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2737 ⟨cop 3595 class class class wbr 4003 {copab 4063 E cep 4287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-eprel 4289 |
This theorem is referenced by: epelc 4291 efrirr 4353 smoiso 6302 ecidg 6598 ordiso2 7033 ltpiord 7317 |
Copyright terms: Public domain | W3C validator |