ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epelg GIF version

Theorem epelg 4321
Description: The epsilon relation and membership are the same. General version of epel 4323. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4030 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 elopab 4288 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦))
3 vex 2763 . . . . . . . . . . 11 𝑥 ∈ V
4 vex 2763 . . . . . . . . . . 11 𝑦 ∈ V
53, 4pm3.2i 272 . . . . . . . . . 10 (𝑥 ∈ V ∧ 𝑦 ∈ V)
6 opeqex 4278 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
75, 6mpbiri 168 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87simpld 112 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V)
98adantr 276 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦) → 𝐴 ∈ V)
109exlimivv 1908 . . . . . 6 (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦) → 𝐴 ∈ V)
112, 10sylbi 121 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} → 𝐴 ∈ V)
12 df-eprel 4320 . . . . 5 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1311, 12eleq2s 2288 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
141, 13sylbi 121 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1514a1i 9 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
16 elex 2771 . . 3 (𝐴𝐵𝐴 ∈ V)
1716a1i 9 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
18 eleq12 2258 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1918, 12brabga 4294 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
2019expcom 116 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
2115, 17, 20pm5.21ndd 706 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3621   class class class wbr 4029  {copab 4089   E cep 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-eprel 4320
This theorem is referenced by:  epelc  4322  efrirr  4384  smoiso  6355  ecidg  6653  ordiso2  7094  ltpiord  7379
  Copyright terms: Public domain W3C validator