| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > epelg | GIF version | ||
| Description: The epsilon relation and membership are the same. General version of epel 4347. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| epelg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4052 | . . . 4 ⊢ (𝐴 E 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ E ) | |
| 2 | elopab 4312 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦)) | |
| 3 | vex 2776 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 4 | vex 2776 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | pm3.2i 272 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 6 | opeqex 4302 | . . . . . . . . . 10 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
| 7 | 5, 6 | mpbiri 168 | . . . . . . . . 9 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | 7 | simpld 112 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
| 9 | 8 | adantr 276 | . . . . . . 7 ⊢ ((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
| 10 | 9 | exlimivv 1921 | . . . . . 6 ⊢ (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
| 11 | 2, 10 | sylbi 121 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} → 𝐴 ∈ V) |
| 12 | df-eprel 4344 | . . . . 5 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
| 13 | 11, 12 | eleq2s 2301 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ E → 𝐴 ∈ V) |
| 14 | 1, 13 | sylbi 121 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐴 ∈ V) |
| 15 | 14 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 → 𝐴 ∈ V)) |
| 16 | elex 2785 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 17 | 16 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → 𝐴 ∈ V)) |
| 18 | eleq12 2271 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
| 19 | 18, 12 | brabga 4318 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 20 | 19 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵))) |
| 21 | 15, 17, 20 | pm5.21ndd 707 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 〈cop 3641 class class class wbr 4051 {copab 4112 E cep 4342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-eprel 4344 |
| This theorem is referenced by: epelc 4346 efrirr 4408 smoiso 6401 ecidg 6699 ordiso2 7152 ltpiord 7452 |
| Copyright terms: Public domain | W3C validator |