![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > epelg | GIF version |
Description: The epsilon relation and membership are the same. General version of epel 4323. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
epelg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4030 | . . . 4 ⊢ (𝐴 E 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ E ) | |
2 | elopab 4288 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦)) | |
3 | vex 2763 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
4 | vex 2763 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | pm3.2i 272 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
6 | opeqex 4278 | . . . . . . . . . 10 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
7 | 5, 6 | mpbiri 168 | . . . . . . . . 9 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 7 | simpld 112 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
9 | 8 | adantr 276 | . . . . . . 7 ⊢ ((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
10 | 9 | exlimivv 1908 | . . . . . 6 ⊢ (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
11 | 2, 10 | sylbi 121 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} → 𝐴 ∈ V) |
12 | df-eprel 4320 | . . . . 5 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
13 | 11, 12 | eleq2s 2288 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ E → 𝐴 ∈ V) |
14 | 1, 13 | sylbi 121 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐴 ∈ V) |
15 | 14 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 → 𝐴 ∈ V)) |
16 | elex 2771 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
17 | 16 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → 𝐴 ∈ V)) |
18 | eleq12 2258 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
19 | 18, 12 | brabga 4294 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
20 | 19 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵))) |
21 | 15, 17, 20 | pm5.21ndd 706 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3621 class class class wbr 4029 {copab 4089 E cep 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-eprel 4320 |
This theorem is referenced by: epelc 4322 efrirr 4384 smoiso 6355 ecidg 6653 ordiso2 7094 ltpiord 7379 |
Copyright terms: Public domain | W3C validator |