Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > epelg | GIF version |
Description: The epsilon relation and membership are the same. General version of epel 4247. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
epelg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3962 | . . . 4 ⊢ (𝐴 E 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ E ) | |
2 | elopab 4213 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦)) | |
3 | vex 2712 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
4 | vex 2712 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | pm3.2i 270 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
6 | opeqex 4204 | . . . . . . . . . 10 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
7 | 5, 6 | mpbiri 167 | . . . . . . . . 9 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 7 | simpld 111 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
9 | 8 | adantr 274 | . . . . . . 7 ⊢ ((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
10 | 9 | exlimivv 1873 | . . . . . 6 ⊢ (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
11 | 2, 10 | sylbi 120 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} → 𝐴 ∈ V) |
12 | df-eprel 4244 | . . . . 5 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
13 | 11, 12 | eleq2s 2249 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ E → 𝐴 ∈ V) |
14 | 1, 13 | sylbi 120 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐴 ∈ V) |
15 | 14 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 → 𝐴 ∈ V)) |
16 | elex 2720 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
17 | 16 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → 𝐴 ∈ V)) |
18 | eleq12 2219 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
19 | 18, 12 | brabga 4219 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
20 | 19 | expcom 115 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵))) |
21 | 15, 17, 20 | pm5.21ndd 695 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∃wex 1469 ∈ wcel 2125 Vcvv 2709 〈cop 3559 class class class wbr 3961 {copab 4020 E cep 4242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-eprel 4244 |
This theorem is referenced by: epelc 4246 efrirr 4308 smoiso 6239 ecidg 6533 ordiso2 6965 ltpiord 7218 |
Copyright terms: Public domain | W3C validator |