| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-idom | GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| df-idom | ⊢ IDomn = (CRing ∩ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidom 13891 | . 2 class IDomn | |
| 2 | ccrg 13631 | . . 3 class CRing | |
| 3 | cdomn 13890 | . . 3 class Domn | |
| 4 | 2, 3 | cin 3156 | . 2 class (CRing ∩ Domn) |
| 5 | 1, 4 | wceq 1364 | 1 wff IDomn = (CRing ∩ Domn) |
| Colors of variables: wff set class |
| This definition is referenced by: isidom 13910 idomdomd 13911 idomcringd 13912 |
| Copyright terms: Public domain | W3C validator |