![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-idom | GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
df-idom | ⊢ IDomn = (CRing ∩ Domn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cidom 13731 | . 2 class IDomn | |
2 | ccrg 13471 | . . 3 class CRing | |
3 | cdomn 13730 | . . 3 class Domn | |
4 | 2, 3 | cin 3152 | . 2 class (CRing ∩ Domn) |
5 | 1, 4 | wceq 1364 | 1 wff IDomn = (CRing ∩ Domn) |
Colors of variables: wff set class |
This definition is referenced by: isidom 13750 idomdomd 13751 idomcringd 13752 |
Copyright terms: Public domain | W3C validator |