| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idomcringd | GIF version | ||
| Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 14072 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2299 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 3364 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∩ cin 3167 CRingccrg 13809 Domncdomn 14068 IDomncidom 14069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3174 df-idom 14072 |
| This theorem is referenced by: idomringd 14091 lgseisenlem3 15599 |
| Copyright terms: Public domain | W3C validator |