![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idomcringd | GIF version |
Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | df-idom 13740 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
3 | 1, 2 | eleqtrdi 2286 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
4 | 3 | elin1d 3348 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∩ cin 3152 CRingccrg 13477 Domncdomn 13736 IDomncidom 13737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-idom 13740 |
This theorem is referenced by: idomringd 13759 lgseisenlem3 15136 |
Copyright terms: Public domain | W3C validator |