| Intuitionistic Logic Explorer Theorem List (p. 143 of 158)  | < Previous Next > | |
| Bad symbols? Try the
 GIF version.  | 
||
| 
 Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List  | 
||
| Type | Label | Description | 
|---|---|---|
| Statement | ||
| Theorem | zncrng 14201 | ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) | ||
| Theorem | znzrh2 14202* | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) | 
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) | ||
| Theorem | znzrhval 14203 | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) | 
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) | ||
| Theorem | znzrhfo 14204 | The ℤ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→𝐵) | ||
| Theorem | zndvds 14205 | Express equality of equivalence classes in ℤ / 𝑛ℤ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘𝐵) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
| Theorem | zndvds0 14206 | Special case of zndvds 14205 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) | ||
| Theorem | znf1o 14207 | The function 𝐹 enumerates all equivalence classes in ℤ/nℤ for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐹:𝑊–1-1-onto→𝐵) | ||
| Theorem | znle2 14208 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) | ||
| Theorem | znleval 14209 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴 ≤ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) | ||
| Theorem | znleval2 14210 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≤ 𝐵 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) | ||
| Theorem | znfi 14211 | The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) | ||
| Theorem | znhash 14212 | The ℤ/nℤ structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) | ||
| Theorem | znidom 14213 | The ℤ/nℤ structure is an integral domain when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℙ → 𝑌 ∈ IDomn) | ||
| Theorem | znidomb 14214 | The ℤ/nℤ structure is a domain precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ)) | ||
| Theorem | znunit 14215 | The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | znrrg 14216 | The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.) | 
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐸 = 𝑈) | ||
According to Wikipedia ("Linear algebra", 03-Mar-2019, https://en.wikipedia.org/wiki/Linear_algebra) "Linear algebra is the branch of mathematics concerning linear equations [...], linear functions [...] and their representations through matrices and vector spaces." Or according to the Merriam-Webster dictionary ("linear algebra", 12-Mar-2019, https://www.merriam-webster.com/dictionary/linear%20algebra) "Definition of linear algebra: a branch of mathematics that is concerned with mathematical structures closed under the operations of addition and scalar multiplication and that includes the theory of systems of linear equations, matrices, determinants, vector spaces, and linear transformations." Dealing with modules (over rings) instead of vector spaces (over fields) allows for a more unified approach. Therefore, linear equations, matrices, determinants, are usually regarded as "over a ring" in this part. Unless otherwise stated, the rings of scalars need not be commutative (see df-cring 13555), but the existence of a unity element is always assumed (our rings are unital, see df-ring 13554). For readers knowing vector spaces but unfamiliar with modules: the elements of a module are still called "vectors" and they still form a group under addition, with a zero vector as neutral element, like in a vector space. Like in a vector space, vectors can be multiplied by scalars, with the usual rules, the only difference being that the scalars are only required to form a ring, and not necessarily a field or a division ring. Note that any vector space is a (special kind of) module, so any theorem proved below for modules applies to any vector space.  | ||
| Syntax | cmps 14217 | Multivariate power series. | 
| class mPwSer | ||
| Definition | df-psr 14218* | Define the algebra of power series over the index set 𝑖 and with coefficients from the ring 𝑟. (Contributed by Mario Carneiro, 21-Mar-2015.) | 
| ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | ||
| Theorem | reldmpsr 14219 | The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) | 
| ⊢ Rel dom mPwSer | ||
| Theorem | psrval 14220* | Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (TopOpen‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) & ⊢ ✚ = ( ∘𝑓 + ↾ (𝐵 × 𝐵)) & ⊢ × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) & ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) & ⊢ (𝜑 → 𝐽 = (∏t‘(𝐷 × {𝑂}))) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), ✚ 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), ∙ 〉, 〈(TopSet‘ndx), 𝐽〉})) | ||
| Theorem | fnpsr 14221 | The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.) | 
| ⊢ mPwSer Fn (V × V) | ||
| Theorem | psrvalstrd 14222 | The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.) | 
| ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → + ∈ 𝑌) & ⊢ (𝜑 → × ∈ 𝑍) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑄) ⇒ ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉) | ||
| Theorem | psrbag 14223* | Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) | ||
| Theorem | psrbagf 14224* | A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) | 
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) | ||
| Theorem | fczpsrbag 14225* | The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.) | 
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) | ||
| Theorem | psrbaglesuppg 14226* | The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟 ≤ 𝐹)) → (◡𝐺 “ ℕ) ⊆ (◡𝐹 “ ℕ)) | ||
| Theorem | psrbasg 14227* | The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.) | 
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) | ||
| Theorem | psrelbas 14228* | An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) | 
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) | ||
| Theorem | psrelbasfun 14229 | An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.) | 
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝐵 → Fun 𝑋) | ||
| Theorem | psrplusgg 14230 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) | 
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ✚ = ( ∘𝑓 + ↾ (𝐵 × 𝐵))) | ||
| Theorem | psradd 14231 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) | 
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) | ||
| Theorem | psraddcl 14232 | Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) | 
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Mgm) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.  | ||
| Syntax | ctop 14233 | Syntax for the class of topologies. | 
| class Top | ||
| Definition | df-top 14234* | 
Define the class of topologies.  It is a proper class.  See istopg 14235 and
       istopfin 14236 for the corresponding characterizations,
using respectively
       binary intersections like in this definition and nonempty finite
       intersections.
 The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)  | 
| ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | ||
| Theorem | istopg 14235* | 
Express the predicate "𝐽 is a topology".  See istopfin 14236 for
       another characterization using nonempty finite intersections instead of
       binary intersections.
 Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)  | 
| ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | ||
| Theorem | istopfin 14236* | Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14235. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.) | 
| ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥((𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐽))) | ||
| Theorem | uniopn 14237 | The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) | 
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | ||
| Theorem | iunopn 14238* | The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) | 
| ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | ||
| Theorem | inopn 14239 | The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) | 
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
| Theorem | fiinopn 14240 | The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) | 
| ⊢ (𝐽 ∈ Top → ((𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ 𝐽)) | ||
| Theorem | unopn 14241 | The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) | 
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) | ||
| Theorem | 0opn 14242 | The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) | 
| ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | ||
| Theorem | 0ntop 14243 | The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) | 
| ⊢ ¬ ∅ ∈ Top | ||
| Theorem | topopn 14244 | The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) | 
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | ||
| Theorem | eltopss 14245 | A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) | 
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
| Syntax | ctopon 14246 | Syntax for the function of topologies on sets. | 
| class TopOn | ||
| Definition | df-topon 14247* | Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.) | 
| ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | ||
| Theorem | funtopon 14248 | The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) | 
| ⊢ Fun TopOn | ||
| Theorem | istopon 14249 | Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | ||
| Theorem | topontop 14250 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | ||
| Theorem | toponuni 14251 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | ||
| Theorem | topontopi 14252 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | toponunii 14253 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐵 = ∪ 𝐽 | ||
| Theorem | toptopon 14254 | Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | ||
| Theorem | toptopon2 14255 | A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) | 
| ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | topontopon 14256 | A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) | 
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | toponrestid 14257 | Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) | 
| ⊢ 𝐴 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐴 = (𝐴 ↾t 𝐵) | ||
| Theorem | toponsspwpwg 14258 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.) | 
| ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) | ||
| Theorem | dmtopon 14259 | The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) | 
| ⊢ dom TopOn = V | ||
| Theorem | fntopon 14260 | The class TopOn is a function with domain V. (Contributed by BJ, 29-Apr-2021.) | 
| ⊢ TopOn Fn V | ||
| Theorem | toponmax 14261 | The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | ||
| Theorem | toponss 14262 | A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) | 
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
| Theorem | toponcom 14263 | If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) | 
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | ||
| Theorem | toponcomb 14264 | Biconditional form of toponcom 14263. (Contributed by BJ, 5-Dec-2021.) | 
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) | ||
| Theorem | topgele 14265 | The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) | 
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | ||
| Syntax | ctps 14266 | Syntax for the class of topological spaces. | 
| class TopSp | ||
| Definition | df-topsp 14267 | Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.) | 
| ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | ||
| Theorem | istps 14268 | Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | ||
| Theorem | istps2 14269 | Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.) | 
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) | ||
| Theorem | tpsuni 14270 | The base set of a topological space. (Contributed by FL, 27-Jun-2014.) | 
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) | ||
| Theorem | tpstop 14271 | The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) | 
| ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) | ||
| Theorem | tpspropd 14272 | A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||
| Theorem | topontopn 14273 | Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) | ||
| Theorem | tsettps 14274 | If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | istpsi 14275 | Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) | 
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = 𝐽 & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | eltpsg 14276 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | eltpsi 14277 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) | 
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Syntax | ctb 14278 | Syntax for the class of topological bases. | 
| class TopBases | ||
| Definition | df-bases 14279* | Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 14281). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.) | 
| ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} | ||
| Theorem | isbasisg 14280* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) | 
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis2g 14281* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) | 
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis3g 14282* | Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) | 
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ ∪ 𝐵∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))))) | ||
| Theorem | basis1 14283 | Property of a basis. (Contributed by NM, 16-Jul-2006.) | 
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | ||
| Theorem | basis2 14284* | Property of a basis. (Contributed by NM, 17-Jul-2006.) | 
| ⊢ (((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵) ∧ (𝐷 ∈ 𝐵 ∧ 𝐴 ∈ (𝐶 ∩ 𝐷))) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))) | ||
| Theorem | fiinbas 14285* | If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) | 
| ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | ||
| Theorem | baspartn 14286* | A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) | 
| ⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → 𝑃 ∈ TopBases) | ||
| Theorem | tgval2 14287* | Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 14300) that (topGen‘𝐵) is indeed a topology (on ∪ 𝐵, see unitg 14298). See also tgval 12933 and tgval3 14294. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) | 
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))}) | ||
| Theorem | eltg 14288 | Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) | 
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | ||
| Theorem | eltg2 14289* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) | 
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | ||
| Theorem | eltg2b 14290* | Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) | 
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
| Theorem | eltg4i 14291 | An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) | 
| ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | ||
| Theorem | eltg3i 14292 | The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) | 
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) | ||
| Theorem | eltg3 14293* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.) | 
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | ||
| Theorem | tgval3 14294* | Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 12933 and tgval2 14287. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.) | 
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)}) | ||
| Theorem | tg1 14295 | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) | 
| ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) | ||
| Theorem | tg2 14296* | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) | 
| ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
| Theorem | bastg 14297 | A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) | 
| ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | ||
| Theorem | unitg 14298 | The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) | 
| ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) | ||
| Theorem | tgss 14299 | Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) | 
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | ||
| Theorem | tgcl 14300 | Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.) | 
| ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | ||
| < Previous Next > | 
| Copyright terms: Public domain | < Previous Next > |