Type | Label | Description |
Statement |
|
Theorem | ivthinclemuopn 14201* |
Lemma for ivthinc 14206. The upper cut is open. (Contributed by
Jim
Kingdon, 19-Feb-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅)
& β’ (π β (π΄[,]π΅) β π·)
& β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ (((π β§ π₯ β (π΄[,]π΅)) β§ (π¦ β (π΄[,]π΅) β§ π₯ < π¦)) β (πΉβπ₯) < (πΉβπ¦))
& β’ πΏ = {π€ β (π΄[,]π΅) β£ (πΉβπ€) < π}
& β’ π
= {π€ β (π΄[,]π΅) β£ π < (πΉβπ€)}
& β’ (π β π β π
) β β’ (π β βπ β π
π < π) |
|
Theorem | ivthinclemur 14202* |
Lemma for ivthinc 14206. The upper cut is rounded. (Contributed by
Jim Kingdon, 18-Feb-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅)
& β’ (π β (π΄[,]π΅) β π·)
& β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ (((π β§ π₯ β (π΄[,]π΅)) β§ (π¦ β (π΄[,]π΅) β§ π₯ < π¦)) β (πΉβπ₯) < (πΉβπ¦))
& β’ πΏ = {π€ β (π΄[,]π΅) β£ (πΉβπ€) < π}
& β’ π
= {π€ β (π΄[,]π΅) β£ π < (πΉβπ€)} β β’ (π β βπ β (π΄[,]π΅)(π β π
β βπ β π
π < π)) |
|
Theorem | ivthinclemdisj 14203* |
Lemma for ivthinc 14206. The lower and upper cuts are disjoint.
(Contributed by Jim Kingdon, 18-Feb-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅)
& β’ (π β (π΄[,]π΅) β π·)
& β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ (((π β§ π₯ β (π΄[,]π΅)) β§ (π¦ β (π΄[,]π΅) β§ π₯ < π¦)) β (πΉβπ₯) < (πΉβπ¦))
& β’ πΏ = {π€ β (π΄[,]π΅) β£ (πΉβπ€) < π}
& β’ π
= {π€ β (π΄[,]π΅) β£ π < (πΉβπ€)} β β’ (π β (πΏ β© π
) = β
) |
|
Theorem | ivthinclemloc 14204* |
Lemma for ivthinc 14206. Locatedness. (Contributed by Jim Kingdon,
18-Feb-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅)
& β’ (π β (π΄[,]π΅) β π·)
& β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ (((π β§ π₯ β (π΄[,]π΅)) β§ (π¦ β (π΄[,]π΅) β§ π₯ < π¦)) β (πΉβπ₯) < (πΉβπ¦))
& β’ πΏ = {π€ β (π΄[,]π΅) β£ (πΉβπ€) < π}
& β’ π
= {π€ β (π΄[,]π΅) β£ π < (πΉβπ€)} β β’ (π β βπ β (π΄[,]π΅)βπ β (π΄[,]π΅)(π < π β (π β πΏ β¨ π β π
))) |
|
Theorem | ivthinclemex 14205* |
Lemma for ivthinc 14206. Existence of a number between the lower
cut
and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅)
& β’ (π β (π΄[,]π΅) β π·)
& β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ (((π β§ π₯ β (π΄[,]π΅)) β§ (π¦ β (π΄[,]π΅) β§ π₯ < π¦)) β (πΉβπ₯) < (πΉβπ¦))
& β’ πΏ = {π€ β (π΄[,]π΅) β£ (πΉβπ€) < π}
& β’ π
= {π€ β (π΄[,]π΅) β£ π < (πΉβπ€)} β β’ (π β β!π§ β (π΄(,)π΅)(βπ β πΏ π < π§ β§ βπ β π
π§ < π)) |
|
Theorem | ivthinc 14206* |
The intermediate value theorem, increasing case, for a strictly
monotonic function. Theorem 5.5 of [Bauer], p. 494. This is
Metamath 100 proof #79. (Contributed by Jim Kingdon,
5-Feb-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅)
& β’ (π β (π΄[,]π΅) β π·)
& β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ (((π β§ π₯ β (π΄[,]π΅)) β§ (π¦ β (π΄[,]π΅) β§ π₯ < π¦)) β (πΉβπ₯) < (πΉβπ¦)) β β’ (π β βπ β (π΄(,)π΅)(πΉβπ) = π) |
|
Theorem | ivthdec 14207* |
The intermediate value theorem, decreasing case, for a strictly
monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅)
& β’ (π β (π΄[,]π΅) β π·)
& β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΅) < π β§ π < (πΉβπ΄))) & β’ (((π β§ π₯ β (π΄[,]π΅)) β§ (π¦ β (π΄[,]π΅) β§ π₯ < π¦)) β (πΉβπ¦) < (πΉβπ₯)) β β’ (π β βπ β (π΄(,)π΅)(πΉβπ) = π) |
|
9.1 Derivatives
|
|
9.1.1 Real and complex
differentiation
|
|
9.1.1.1 Derivatives of functions of one complex
or real variable
|
|
Syntax | climc 14208 |
The limit operator.
|
class limβ |
|
Syntax | cdv 14209 |
The derivative operator.
|
class D |
|
Definition | df-limced 14210* |
Define the set of limits of a complex function at a point. Under normal
circumstances, this will be a singleton or empty, depending on whether
the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.)
(Revised by Jim Kingdon, 3-Jun-2023.)
|
β’ limβ = (π β (β βpm
β), π₯ β β
β¦ {π¦ β β
β£ ((π:dom πβΆβ β§ dom π β β) β§ (π₯ β β β§
βπ β
β+ βπ β β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π)))}) |
|
Definition | df-dvap 14211* |
Define the derivative operator. This acts on functions to produce a
function that is defined where the original function is differentiable,
with value the derivative of the function at these points. The set
π here is the ambient topological space
under which we are
evaluating the continuity of the difference quotient. Although the
definition is valid for any subset of β
and is well-behaved when
π contains no isolated points, we will
restrict our attention to the
cases π = β or π = β for the
majority of the development,
these corresponding respectively to real and complex differentiation.
(Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon,
25-Jun-2023.)
|
β’ D = (π β π« β, π β (β
βpm π ) β¦ βͺ π₯ β ((intβ((MetOpenβ(abs
β β )) βΎt π ))βdom π)({π₯} Γ ((π§ β {π€ β dom π β£ π€ # π₯} β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯))) |
|
Theorem | limcrcl 14212 |
Reverse closure for the limit operator. (Contributed by Mario Carneiro,
28-Dec-2016.)
|
β’ (πΆ β (πΉ limβ π΅) β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β)) |
|
Theorem | limccl 14213 |
Closure of the limit operator. (Contributed by Mario Carneiro,
25-Dec-2016.)
|
β’ (πΉ limβ π΅) β β |
|
Theorem | ellimc3apf 14214* |
Write the epsilon-delta definition of a limit. (Contributed by Mario
Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.)
|
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’
β²π§πΉ β β’ (π β (πΆ β (πΉ limβ π΅) β (πΆ β β β§ βπ₯ β β+
βπ¦ β
β+ βπ§ β π΄ ((π§ # π΅ β§ (absβ(π§ β π΅)) < π¦) β (absβ((πΉβπ§) β πΆ)) < π₯)))) |
|
Theorem | ellimc3ap 14215* |
Write the epsilon-delta definition of a limit. (Contributed by Mario
Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon,
3-Jun-2023.)
|
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β)
β β’ (π β (πΆ β (πΉ limβ π΅) β (πΆ β β β§ βπ₯ β β+
βπ¦ β
β+ βπ§ β π΄ ((π§ # π΅ β§ (absβ(π§ β π΅)) < π¦) β (absβ((πΉβπ§) β πΆ)) < π₯)))) |
|
Theorem | limcdifap 14216* |
It suffices to consider functions which are not defined at π΅ to
define the limit of a function. In particular, the value of the
original function πΉ at π΅ does not affect the
limit of πΉ.
(Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon,
3-Jun-2023.)
|
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β)
β β’ (π β (πΉ limβ π΅) = ((πΉ βΎ {π₯ β π΄ β£ π₯ # π΅}) limβ π΅)) |
|
Theorem | limcmpted 14217* |
Express the limit operator for a function defined by a mapping, via
epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ ((π β§ π§ β π΄) β π· β β)
β β’ (π β (πΆ β ((π§ β π΄ β¦ π·) limβ π΅) β (πΆ β β β§ βπ₯ β β+
βπ¦ β
β+ βπ§ β π΄ ((π§ # π΅ β§ (absβ(π§ β π΅)) < π¦) β (absβ(π· β πΆ)) < π₯)))) |
|
Theorem | limcimolemlt 14218* |
Lemma for limcimo 14219. (Contributed by Jim Kingdon, 3-Jul-2023.)
|
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΅ β πΆ)
& β’ (π β π΅ β π)
& β’ (π β πΆ β (πΎ βΎt π)) & β’ (π β π β {β, β}) & β’ (π β {π β πΆ β£ π # π΅} β π΄)
& β’ πΎ = (MetOpenβ(abs β β
))
& β’ (π β π· β β+) & β’ (π β π β (πΉ limβ π΅)) & β’ (π β π β (πΉ limβ π΅)) & β’ (π β βπ§ β π΄ ((π§ # π΅ β§ (absβ(π§ β π΅)) < π·) β (absβ((πΉβπ§) β π)) < ((absβ(π β π)) / 2))) & β’ (π β πΊ β β+) & β’ (π β βπ€ β π΄ ((π€ # π΅ β§ (absβ(π€ β π΅)) < πΊ) β (absβ((πΉβπ€) β π)) < ((absβ(π β π)) / 2))) β β’ (π β (absβ(π β π)) < (absβ(π β π))) |
|
Theorem | limcimo 14219* |
Conditions which ensure there is at most one limit value of πΉ at
π΅. (Contributed by Mario Carneiro,
25-Dec-2016.) (Revised by
Jim Kingdon, 8-Jul-2023.)
|
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΅ β πΆ)
& β’ (π β π΅ β π)
& β’ (π β πΆ β (πΎ βΎt π)) & β’ (π β π β {β, β}) & β’ (π β {π β πΆ β£ π # π΅} β π΄)
& β’ πΎ = (MetOpenβ(abs β β
)) β β’ (π β β*π₯ π₯ β (πΉ limβ π΅)) |
|
Theorem | limcresi 14220 |
Any limit of πΉ is also a limit of the restriction
of πΉ.
(Contributed by Mario Carneiro, 28-Dec-2016.)
|
β’ (πΉ limβ π΅) β ((πΉ βΎ πΆ) limβ π΅) |
|
Theorem | cnplimcim 14221 |
If a function is continuous at π΅, its limit at π΅ equals the
value of the function there. (Contributed by Mario Carneiro,
28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
|
β’ πΎ = (MetOpenβ(abs β β
))
& β’ π½ = (πΎ βΎt π΄) β β’ ((π΄ β β β§ π΅ β π΄) β (πΉ β ((π½ CnP πΎ)βπ΅) β (πΉ:π΄βΆβ β§ (πΉβπ΅) β (πΉ limβ π΅)))) |
|
Theorem | cnplimclemle 14222 |
Lemma for cnplimccntop 14224. Satisfying the epsilon condition for
continuity. (Contributed by Mario Carneiro and Jim Kingdon,
17-Nov-2023.)
|
β’ πΎ = (MetOpenβ(abs β β
))
& β’ π½ = (πΎ βΎt π΄)
& β’ (π β π΄ β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΅ β π΄)
& β’ (π β (πΉβπ΅) β (πΉ limβ π΅)) & β’ (π β πΈ β β+) & β’ (π β π· β β+) & β’ (π β π β π΄)
& β’ ((π β§ π # π΅ β§ (absβ(π β π΅)) < π·) β (absβ((πΉβπ) β (πΉβπ΅))) < (πΈ / 2)) & β’ (π β (absβ(π β π΅)) < π·) β β’ (π β (absβ((πΉβπ) β (πΉβπ΅))) < πΈ) |
|
Theorem | cnplimclemr 14223 |
Lemma for cnplimccntop 14224. The reverse direction. (Contributed by
Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
|
β’ πΎ = (MetOpenβ(abs β β
))
& β’ π½ = (πΎ βΎt π΄)
& β’ (π β π΄ β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΅ β π΄)
& β’ (π β (πΉβπ΅) β (πΉ limβ π΅)) β β’ (π β πΉ β ((π½ CnP πΎ)βπ΅)) |
|
Theorem | cnplimccntop 14224 |
A function is continuous at π΅ iff its limit at π΅ equals
the
value of the function there. (Contributed by Mario Carneiro,
28-Dec-2016.)
|
β’ πΎ = (MetOpenβ(abs β β
))
& β’ π½ = (πΎ βΎt π΄) β β’ ((π΄ β β β§ π΅ β π΄) β (πΉ β ((π½ CnP πΎ)βπ΅) β (πΉ:π΄βΆβ β§ (πΉβπ΅) β (πΉ limβ π΅)))) |
|
Theorem | cnlimcim 14225* |
If πΉ is a continuous function, the limit
of the function at each
point equals the value of the function. (Contributed by Mario Carneiro,
28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
|
β’ (π΄ β β β (πΉ β (π΄βcnββ) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ (πΉβπ₯) β (πΉ limβ π₯)))) |
|
Theorem | cnlimc 14226* |
πΉ
is a continuous function iff the limit of the function at each
point equals the value of the function. (Contributed by Mario Carneiro,
28-Dec-2016.)
|
β’ (π΄ β β β (πΉ β (π΄βcnββ) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ (πΉβπ₯) β (πΉ limβ π₯)))) |
|
Theorem | cnlimci 14227 |
If πΉ is a continuous function, then the
limit of the function at any
point equals its value. (Contributed by Mario Carneiro,
28-Dec-2016.)
|
β’ (π β πΉ β (π΄βcnβπ·)) & β’ (π β π΅ β π΄) β β’ (π β (πΉβπ΅) β (πΉ limβ π΅)) |
|
Theorem | cnmptlimc 14228* |
If πΉ is a continuous function, then the
limit of the function at any
point equals its value. (Contributed by Mario Carneiro,
28-Dec-2016.)
|
β’ (π β (π₯ β π΄ β¦ π) β (π΄βcnβπ·)) & β’ (π β π΅ β π΄)
& β’ (π₯ = π΅ β π = π) β β’ (π β π β ((π₯ β π΄ β¦ π) limβ π΅)) |
|
Theorem | limccnpcntop 14229 |
If the limit of πΉ at π΅ is πΆ and
πΊ
is continuous at
πΆ, then the limit of πΊ β πΉ at π΅ is
πΊ(πΆ).
(Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon,
18-Jun-2023.)
|
β’ (π β πΉ:π΄βΆπ·)
& β’ (π β π· β β) & β’ πΎ = (MetOpenβ(abs β
β ))
& β’ π½ = (πΎ βΎt π·)
& β’ (π β πΆ β (πΉ limβ π΅)) & β’ (π β πΊ β ((π½ CnP πΎ)βπΆ)) β β’ (π β (πΊβπΆ) β ((πΊ β πΉ) limβ π΅)) |
|
Theorem | limccnp2lem 14230* |
Lemma for limccnp2cntop 14231. This is most of the result, expressed in
epsilon-delta form, with a large number of hypotheses so that lengthy
expressions do not need to be repeated. (Contributed by Jim Kingdon,
9-Nov-2023.)
|
β’ ((π β§ π₯ β π΄) β π
β π)
& β’ ((π β§ π₯ β π΄) β π β π)
& β’ (π β π β β) & β’ (π β π β β) & β’ πΎ = (MetOpenβ(abs β
β ))
& β’ π½ = ((πΎ Γt πΎ) βΎt (π Γ π)) & β’ (π β πΆ β ((π₯ β π΄ β¦ π
) limβ π΅)) & β’ (π β π· β ((π₯ β π΄ β¦ π) limβ π΅)) & β’ (π β π» β ((π½ CnP πΎ)ββ¨πΆ, π·β©)) & β’ β²π₯π
& β’ (π β πΈ β β+) & β’ (π β πΏ β β+) & β’ (π β βπ β π βπ β π (((πΆ((abs β β ) βΎ (π Γ π))π) < πΏ β§ (π·((abs β β ) βΎ (π Γ π))π ) < πΏ) β ((πΆπ»π·)(abs β β )(ππ»π )) < πΈ)) & β’ (π β πΉ β β+) & β’ (π β βπ₯ β π΄ ((π₯ # π΅ β§ (absβ(π₯ β π΅)) < πΉ) β (absβ(π
β πΆ)) < πΏ)) & β’ (π β πΊ β β+) & β’ (π β βπ₯ β π΄ ((π₯ # π΅ β§ (absβ(π₯ β π΅)) < πΊ) β (absβ(π β π·)) < πΏ)) β β’ (π β βπ β β+ βπ₯ β π΄ ((π₯ # π΅ β§ (absβ(π₯ β π΅)) < π) β (absβ((π
π»π) β (πΆπ»π·))) < πΈ)) |
|
Theorem | limccnp2cntop 14231* |
The image of a convergent sequence under a continuous map is convergent
to the image of the original point. Binary operation version.
(Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon,
14-Nov-2023.)
|
β’ ((π β§ π₯ β π΄) β π
β π)
& β’ ((π β§ π₯ β π΄) β π β π)
& β’ (π β π β β) & β’ (π β π β β) & β’ πΎ = (MetOpenβ(abs β
β ))
& β’ π½ = ((πΎ Γt πΎ) βΎt (π Γ π)) & β’ (π β πΆ β ((π₯ β π΄ β¦ π
) limβ π΅)) & β’ (π β π· β ((π₯ β π΄ β¦ π) limβ π΅)) & β’ (π β π» β ((π½ CnP πΎ)ββ¨πΆ, π·β©)) β β’ (π β (πΆπ»π·) β ((π₯ β π΄ β¦ (π
π»π)) limβ π΅)) |
|
Theorem | limccoap 14232* |
Composition of two limits. This theorem is only usable in the case
where π₯ # π implies R(x) #
πΆ so it is less
general than
might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.)
(Revised by Jim Kingdon, 18-Dec-2023.)
|
β’ ((π β§ π₯ β {π€ β π΄ β£ π€ # π}) β π
β {π€ β π΅ β£ π€ # πΆ}) & β’ ((π β§ π¦ β {π€ β π΅ β£ π€ # πΆ}) β π β β) & β’ (π β πΆ β ((π₯ β {π€ β π΄ β£ π€ # π} β¦ π
) limβ π)) & β’ (π β π· β ((π¦ β {π€ β π΅ β£ π€ # πΆ} β¦ π) limβ πΆ)) & β’ (π¦ = π
β π = π) β β’ (π β π· β ((π₯ β {π€ β π΄ β£ π€ # π} β¦ π) limβ π)) |
|
Theorem | reldvg 14233 |
The derivative function is a relation. (Contributed by Mario Carneiro,
7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
|
β’ ((π β β β§ πΉ β (β βpm
π)) β Rel (π D πΉ)) |
|
Theorem | dvlemap 14234* |
Closure for a difference quotient. (Contributed by Mario Carneiro,
1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
|
β’ (π β πΉ:π·βΆβ) & β’ (π β π· β β) & β’ (π β π΅ β π·) β β’ ((π β§ π΄ β {π€ β π· β£ π€ # π΅}) β (((πΉβπ΄) β (πΉβπ΅)) / (π΄ β π΅)) β β) |
|
Theorem | dvfvalap 14235* |
Value and set bounds on the derivative operator. (Contributed by Mario
Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
|
β’ π = (πΎ βΎt π)
& β’ πΎ = (MetOpenβ(abs β β
)) β β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β ((π D πΉ) = βͺ
π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β§ (π D πΉ) β (((intβπ)βπ΄) Γ β))) |
|
Theorem | eldvap 14236* |
The differentiable predicate. A function πΉ is differentiable at
π΅ with derivative πΆ iff
πΉ
is defined in a neighborhood of
π΅ and the difference quotient has
limit πΆ at π΅.
(Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon,
27-Jun-2023.)
|
β’ π = (πΎ βΎt π)
& β’ πΎ = (MetOpenβ(abs β β
))
& β’ πΊ = (π§ β {π€ β π΄ β£ π€ # π΅} β¦ (((πΉβπ§) β (πΉβπ΅)) / (π§ β π΅))) & β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) β β’ (π β (π΅(π D πΉ)πΆ β (π΅ β ((intβπ)βπ΄) β§ πΆ β (πΊ limβ π΅)))) |
|
Theorem | dvcl 14237 |
The derivative function takes values in the complex numbers.
(Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario
Carneiro, 9-Feb-2015.)
|
β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) β β’ ((π β§ π΅(π D πΉ)πΆ) β πΆ β β) |
|
Theorem | dvbssntrcntop 14238 |
The set of differentiable points is a subset of the interior of the
domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.)
(Revised by Jim Kingdon, 27-Jun-2023.)
|
β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π)
& β’ π½ = (πΎ βΎt π)
& β’ πΎ = (MetOpenβ(abs β β
)) β β’ (π β dom (π D πΉ) β ((intβπ½)βπ΄)) |
|
Theorem | dvbss 14239 |
The set of differentiable points is a subset of the domain of the
function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by
Mario Carneiro, 9-Feb-2015.)
|
β’ (π β π β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) β β’ (π β dom (π D πΉ) β π΄) |
|
Theorem | dvbsssg 14240 |
The set of differentiable points is a subset of the ambient topology.
(Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon,
28-Jun-2023.)
|
β’ ((π β β β§ πΉ β (β βpm
π)) β dom (π D πΉ) β π) |
|
Theorem | recnprss 14241 |
Both β and β are
subsets of β. (Contributed by Mario
Carneiro, 10-Feb-2015.)
|
β’ (π β {β, β} β π β
β) |
|
Theorem | dvfgg 14242 |
Explicitly write out the functionality condition on derivative for
π =
β and β. (Contributed by Mario
Carneiro, 9-Feb-2015.)
(Revised by Jim Kingdon, 28-Jun-2023.)
|
β’ ((π β {β, β} β§ πΉ β (β
βpm π)) β (π D πΉ):dom (π D πΉ)βΆβ) |
|
Theorem | dvfpm 14243 |
The derivative is a function. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
|
β’ (πΉ β (β βpm
β) β (β D πΉ):dom (β D πΉ)βΆβ) |
|
Theorem | dvfcnpm 14244 |
The derivative is a function. (Contributed by Mario Carneiro,
9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
|
β’ (πΉ β (β βpm
β) β (β D πΉ):dom (β D πΉ)βΆβ) |
|
Theorem | dvidlemap 14245* |
Lemma for dvid 14247 and dvconst 14246. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
β’ (π β πΉ:ββΆβ) & β’ ((π β§ (π₯ β β β§ π§ β β β§ π§ # π₯)) β (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯)) = π΅)
& β’ π΅ β β
β β’ (π β (β D πΉ) = (β Γ {π΅})) |
|
Theorem | dvconst 14246 |
Derivative of a constant function. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
β’ (π΄ β β β (β D (β
Γ {π΄})) = (β
Γ {0})) |
|
Theorem | dvid 14247 |
Derivative of the identity function. (Contributed by Mario Carneiro,
8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
β’ (β D ( I βΎ β)) = (β
Γ {1}) |
|
Theorem | dvcnp2cntop 14248 |
A function is continuous at each point for which it is differentiable.
(Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario
Carneiro, 28-Dec-2016.)
|
β’ π½ = (πΎ βΎt π΄)
& β’ πΎ = (MetOpenβ(abs β β
)) β β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ π΅ β dom (π D πΉ)) β πΉ β ((π½ CnP πΎ)βπ΅)) |
|
Theorem | dvcn 14249 |
A differentiable function is continuous. (Contributed by Mario
Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
|
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β πΉ β (π΄βcnββ)) |
|
Theorem | dvaddxxbr 14250 |
The sum rule for derivatives at a point. That is, if the derivative
of πΉ at πΆ is πΎ and the
derivative of πΊ at πΆ is
πΏ, then the derivative of the
pointwise sum of those two
functions at πΆ is πΎ + πΏ. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
|
β’ (π β πΉ:πβΆβ) & β’ (π β π β π)
& β’ (π β πΊ:πβΆβ) & β’ (π β π β β) & β’ (π β πΆ(π D πΉ)πΎ)
& β’ (π β πΆ(π D πΊ)πΏ)
& β’ π½ = (MetOpenβ(abs β β
)) β β’ (π β πΆ(π D (πΉ βπ + πΊ))(πΎ + πΏ)) |
|
Theorem | dvmulxxbr 14251 |
The product rule for derivatives at a point. For the (simpler but
more limited) function version, see dvmulxx 14253. (Contributed by Mario
Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
|
β’ (π β πΉ:πβΆβ) & β’ (π β π β π)
& β’ (π β πΊ:πβΆβ) & β’ (π β π β β) & β’ (π β πΆ(π D πΉ)πΎ)
& β’ (π β πΆ(π D πΊ)πΏ)
& β’ π½ = (MetOpenβ(abs β β
)) β β’ (π β πΆ(π D (πΉ βπ Β· πΊ))((πΎ Β· (πΊβπΆ)) + (πΏ Β· (πΉβπΆ)))) |
|
Theorem | dvaddxx 14252 |
The sum rule for derivatives at a point. For the (more general)
relation version, see dvaddxxbr 14250. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
|
β’ (π β πΉ:πβΆβ) & β’ (π β π β π)
& β’ (π β πΊ:πβΆβ) & β’ (π β π β {β, β}) & β’ (π β πΆ β dom (π D πΉ)) & β’ (π β πΆ β dom (π D πΊ)) β β’ (π β ((π D (πΉ βπ + πΊ))βπΆ) = (((π D πΉ)βπΆ) + ((π D πΊ)βπΆ))) |
|
Theorem | dvmulxx 14253 |
The product rule for derivatives at a point. For the (more general)
relation version, see dvmulxxbr 14251. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
|
β’ (π β πΉ:πβΆβ) & β’ (π β π β π)
& β’ (π β πΊ:πβΆβ) & β’ (π β π β {β, β}) & β’ (π β πΆ β dom (π D πΉ)) & β’ (π β πΆ β dom (π D πΊ)) β β’ (π β ((π D (πΉ βπ Β· πΊ))βπΆ) = ((((π D πΉ)βπΆ) Β· (πΊβπΆ)) + (((π D πΊ)βπΆ) Β· (πΉβπΆ)))) |
|
Theorem | dviaddf 14254 |
The sum rule for everywhere-differentiable functions. (Contributed by
Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro,
10-Feb-2015.)
|
β’ (π β π β {β, β}) & β’ (π β π β π)
& β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆβ) & β’ (π β dom (π D πΉ) = π)
& β’ (π β dom (π D πΊ) = π) β β’ (π β (π D (πΉ βπ + πΊ)) = ((π D πΉ) βπ + (π D πΊ))) |
|
Theorem | dvimulf 14255 |
The product rule for everywhere-differentiable functions. (Contributed
by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro,
10-Feb-2015.)
|
β’ (π β π β {β, β}) & β’ (π β π β π)
& β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆβ) & β’ (π β dom (π D πΉ) = π)
& β’ (π β dom (π D πΊ) = π) β β’ (π β (π D (πΉ βπ Β· πΊ)) = (((π D πΉ) βπ Β·
πΊ)
βπ + ((π D πΊ) βπ Β·
πΉ))) |
|
Theorem | dvcoapbr 14256* |
The chain rule for derivatives at a point. The
π’
# πΆ β (πΊβπ’) # (πΊβπΆ) hypothesis constrains what
functions work for πΊ. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
|
β’ (π β πΉ:πβΆβ) & β’ (π β π β π)
& β’ (π β πΊ:πβΆπ)
& β’ (π β π β π)
& β’ (π β βπ’ β π (π’ # πΆ β (πΊβπ’) # (πΊβπΆ))) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (πΊβπΆ)(π D πΉ)πΎ)
& β’ (π β πΆ(π D πΊ)πΏ)
& β’ π½ = (MetOpenβ(abs β β
)) β β’ (π β πΆ(π D (πΉ β πΊ))(πΎ Β· πΏ)) |
|
Theorem | dvcjbr 14257 |
The derivative of the conjugate of a function. For the (simpler but
more limited) function version, see dvcj 14258. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
|
β’ (π β πΉ:πβΆβ) & β’ (π β π β β) & β’ (π β πΆ β dom (β D πΉ)) β β’ (π β πΆ(β D (β β πΉ))(ββ((β D
πΉ)βπΆ))) |
|
Theorem | dvcj 14258 |
The derivative of the conjugate of a function. For the (more general)
relation version, see dvcjbr 14257. (Contributed by Mario Carneiro,
1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
|
β’ ((πΉ:πβΆβ β§ π β β) β (β D
(β β πΉ)) =
(β β (β D πΉ))) |
|
Theorem | dvfre 14259 |
The derivative of a real function is real. (Contributed by Mario
Carneiro, 1-Sep-2014.)
|
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β D πΉ):dom (β D πΉ)βΆβ) |
|
Theorem | dvexp 14260* |
Derivative of a power function. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
|
β’ (π β β β (β D (π₯ β β β¦ (π₯βπ))) = (π₯ β β β¦ (π Β· (π₯β(π β 1))))) |
|
Theorem | dvexp2 14261* |
Derivative of an exponential, possibly zero power. (Contributed by
Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro,
10-Feb-2015.)
|
β’ (π β β0 β (β
D (π₯ β β
β¦ (π₯βπ))) = (π₯ β β β¦ if(π = 0, 0, (π Β· (π₯β(π β 1)))))) |
|
Theorem | dvrecap 14262* |
Derivative of the reciprocal function. (Contributed by Mario Carneiro,
25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
|
β’ (π΄ β β β (β D (π₯ β {π€ β β β£ π€ # 0} β¦ (π΄ / π₯))) = (π₯ β {π€ β β β£ π€ # 0} β¦ -(π΄ / (π₯β2)))) |
|
Theorem | dvmptidcn 14263 |
Function-builder for derivative: derivative of the identity.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
30-Dec-2023.)
|
β’ (β D (π₯ β β β¦ π₯)) = (π₯ β β β¦ 1) |
|
Theorem | dvmptccn 14264* |
Function-builder for derivative: derivative of a constant. (Contributed
by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
30-Dec-2023.)
|
β’ (π β π΄ β β)
β β’ (π β (β D (π₯ β β β¦ π΄)) = (π₯ β β β¦ 0)) |
|
Theorem | dvmptclx 14265* |
Closure lemma for dvmptmulx 14267 and other related theorems. (Contributed
by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro,
11-Feb-2015.)
|
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π)
& β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β π β π) β β’ ((π β§ π₯ β π) β π΅ β β) |
|
Theorem | dvmptaddx 14266* |
Function-builder for derivative, addition rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
|
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π)
& β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β π β π)
& β’ ((π β§ π₯ β π) β πΆ β β) & β’ ((π β§ π₯ β π) β π· β π)
& β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ π·)) β β’ (π β (π D (π₯ β π β¦ (π΄ + πΆ))) = (π₯ β π β¦ (π΅ + π·))) |
|
Theorem | dvmptmulx 14267* |
Function-builder for derivative, product rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
|
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π)
& β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β π β π)
& β’ ((π β§ π₯ β π) β πΆ β β) & β’ ((π β§ π₯ β π) β π· β π)
& β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ π·)) β β’ (π β (π D (π₯ β π β¦ (π΄ Β· πΆ))) = (π₯ β π β¦ ((π΅ Β· πΆ) + (π· Β· π΄)))) |
|
Theorem | dvmptcmulcn 14268* |
Function-builder for derivative, product rule for constant multiplier.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
β’ ((π β§ π₯ β β) β π΄ β β) & β’ ((π β§ π₯ β β) β π΅ β π)
& β’ (π β (β D (π₯ β β β¦ π΄)) = (π₯ β β β¦ π΅)) & β’ (π β πΆ β β)
β β’ (π β (β D (π₯ β β β¦ (πΆ Β· π΄))) = (π₯ β β β¦ (πΆ Β· π΅))) |
|
Theorem | dvmptnegcn 14269* |
Function-builder for derivative, product rule for negatives.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
β’ ((π β§ π₯ β β) β π΄ β β) & β’ ((π β§ π₯ β β) β π΅ β π)
& β’ (π β (β D (π₯ β β β¦ π΄)) = (π₯ β β β¦ π΅)) β β’ (π β (β D (π₯ β β β¦ -π΄)) = (π₯ β β β¦ -π΅)) |
|
Theorem | dvmptsubcn 14270* |
Function-builder for derivative, subtraction rule. (Contributed by
Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
β’ ((π β§ π₯ β β) β π΄ β β) & β’ ((π β§ π₯ β β) β π΅ β π)
& β’ (π β (β D (π₯ β β β¦ π΄)) = (π₯ β β β¦ π΅)) & β’ ((π β§ π₯ β β) β πΆ β β) & β’ ((π β§ π₯ β β) β π· β π)
& β’ (π β (β D (π₯ β β β¦ πΆ)) = (π₯ β β β¦ π·)) β β’ (π β (β D (π₯ β β β¦ (π΄ β πΆ))) = (π₯ β β β¦ (π΅ β π·))) |
|
Theorem | dvmptcjx 14271* |
Function-builder for derivative, conjugate rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
|
β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π)
& β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β π β β)
β β’ (π β (β D (π₯ β π β¦ (ββπ΄))) = (π₯ β π β¦ (ββπ΅))) |
|
Theorem | dveflem 14272 |
Derivative of the exponential function at 0. The key step in the proof
is eftlub 11700, to show that
abs(exp(π₯) β 1 β π₯) β€ abs(π₯)β2 Β· (3 / 4).
(Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario
Carneiro, 28-Dec-2016.)
|
β’ 0(β D exp)1 |
|
Theorem | dvef 14273 |
Derivative of the exponential function. (Contributed by Mario Carneiro,
9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
|
β’ (β D exp) = exp |
|
PART 10 BASIC REAL AND COMPLEX
FUNCTIONS
|
|
10.1 Basic trigonometry
|
|
10.1.1 The exponential, sine, and cosine
functions (cont.)
|
|
Theorem | efcn 14274 |
The exponential function is continuous. (Contributed by Paul Chapman,
15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
|
β’ exp β (ββcnββ) |
|
Theorem | sincn 14275 |
Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
β’ sin β (ββcnββ) |
|
Theorem | coscn 14276 |
Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
β’ cos β (ββcnββ) |
|
Theorem | reeff1olem 14277* |
Lemma for reeff1o 14279. (Contributed by Paul Chapman,
18-Oct-2007.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
β’ ((π β β β§ 1 < π) β βπ₯ β β
(expβπ₯) = π) |
|
Theorem | reeff1oleme 14278* |
Lemma for reeff1o 14279. (Contributed by Jim Kingdon, 15-May-2024.)
|
β’ (π β (0(,)e) β βπ₯ β β
(expβπ₯) = π) |
|
Theorem | reeff1o 14279 |
The real exponential function is one-to-one onto. (Contributed by Paul
Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
β’ (exp βΎ β):ββ1-1-ontoββ+ |
|
Theorem | efltlemlt 14280 |
Lemma for eflt 14281. The converse of efltim 11708 plus the epsilon-delta
setup. (Contributed by Jim Kingdon, 22-May-2024.)
|
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β (expβπ΄) < (expβπ΅)) & β’ (π β π· β β+) & β’ (π β ((absβ(π΄ β π΅)) < π· β (absβ((expβπ΄) β (expβπ΅))) < ((expβπ΅) β (expβπ΄))))
β β’ (π β π΄ < π΅) |
|
Theorem | eflt 14281 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
21-May-2024.)
|
β’ ((π΄ β β β§ π΅ β β) β (π΄ < π΅ β (expβπ΄) < (expβπ΅))) |
|
Theorem | efle 14282 |
The exponential function on the reals is nondecreasing. (Contributed by
Mario Carneiro, 11-Mar-2014.)
|
β’ ((π΄ β β β§ π΅ β β) β (π΄ β€ π΅ β (expβπ΄) β€ (expβπ΅))) |
|
Theorem | reefiso 14283 |
The exponential function on the reals determines an isomorphism from
reals onto positive reals. (Contributed by Steve Rodriguez,
25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
|
β’ (exp βΎ β) Isom < , <
(β, β+) |
|
Theorem | reapef 14284 |
Apartness and the exponential function for reals. (Contributed by Jim
Kingdon, 11-Jul-2024.)
|
β’ ((π΄ β β β§ π΅ β β) β (π΄ # π΅ β (expβπ΄) # (expβπ΅))) |
|
10.1.2 Properties of pi =
3.14159...
|
|
Theorem | pilem1 14285 |
Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro,
9-May-2014.)
|
β’ (π΄ β (β+ β© (β‘sin β {0})) β (π΄ β β+ β§
(sinβπ΄) =
0)) |
|
Theorem | cosz12 14286 |
Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and
Jim Kingdon, 7-Mar-2024.)
|
β’ βπ β (1(,)2)(cosβπ) = 0 |
|
Theorem | sin0pilem1 14287* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
β’ βπ β (1(,)2)((cosβπ) = 0 β§ βπ₯ β (π(,)(2 Β· π))0 < (sinβπ₯)) |
|
Theorem | sin0pilem2 14288* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
β’ βπ β (2(,)4)((sinβπ) = 0 β§ βπ₯ β (0(,)π)0 < (sinβπ₯)) |
|
Theorem | pilem3 14289 |
Lemma for pi related theorems. (Contributed by Jim Kingdon,
9-Mar-2024.)
|
β’ (Ο β (2(,)4) β§ (sinβΟ)
= 0) |
|
Theorem | pigt2lt4 14290 |
Ο is between 2 and 4. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
β’ (2 < Ο β§ Ο <
4) |
|
Theorem | sinpi 14291 |
The sine of Ο is 0. (Contributed by Paul Chapman,
23-Jan-2008.)
|
β’ (sinβΟ) = 0 |
|
Theorem | pire 14292 |
Ο is a real number. (Contributed by Paul Chapman,
23-Jan-2008.)
|
β’ Ο β β |
|
Theorem | picn 14293 |
Ο is a complex number. (Contributed by David A.
Wheeler,
6-Dec-2018.)
|
β’ Ο β β |
|
Theorem | pipos 14294 |
Ο is positive. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
β’ 0 < Ο |
|
Theorem | pirp 14295 |
Ο is a positive real. (Contributed by Glauco
Siliprandi,
11-Dec-2019.)
|
β’ Ο β
β+ |
|
Theorem | negpicn 14296 |
-Ο is a real number. (Contributed by David A.
Wheeler,
8-Dec-2018.)
|
β’ -Ο β β |
|
Theorem | sinhalfpilem 14297 |
Lemma for sinhalfpi 14302 and coshalfpi 14303. (Contributed by Paul Chapman,
23-Jan-2008.)
|
β’ ((sinβ(Ο / 2)) = 1 β§
(cosβ(Ο / 2)) = 0) |
|
Theorem | halfpire 14298 |
Ο / 2 is real. (Contributed by David Moews,
28-Feb-2017.)
|
β’ (Ο / 2) β β |
|
Theorem | neghalfpire 14299 |
-Ο / 2 is real. (Contributed by David A. Wheeler,
8-Dec-2018.)
|
β’ -(Ο / 2) β β |
|
Theorem | neghalfpirx 14300 |
-Ο / 2 is an extended real. (Contributed by David
A. Wheeler,
8-Dec-2018.)
|
β’ -(Ο / 2) β
β* |