Theorem List for Intuitionistic Logic Explorer - 14201-14300 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | lspex 14201 |
Existence of the span of a set of vectors. (Contributed by Jim Kingdon,
25-Apr-2025.)
|
| ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) ∈ V) |
| |
| Theorem | lspsnsubg 14202 |
The span of a singleton is an additive subgroup (frequently used special
case of lspcl 14197). (Contributed by Mario Carneiro,
21-Apr-2016.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| |
| Theorem | lspid 14203 |
The span of a subspace is itself. (Contributed by NM, 15-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| |
| Theorem | lspssv 14204 |
A span is a set of vectors. (Contributed by NM, 22-Feb-2014.) (Revised
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ 𝑉) |
| |
| Theorem | lspss 14205 |
Span preserves subset ordering. (Contributed by NM, 11-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
| |
| Theorem | lspssid 14206 |
A set of vectors is a subset of its span. (Contributed by NM,
6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| |
| Theorem | lspidm 14207 |
The span of a set of vectors is idempotent. (Contributed by NM,
22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) |
| |
| Theorem | lspun 14208 |
The span of union is the span of the union of spans. (Contributed by
NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| |
| Theorem | lspssp 14209 |
If a set of vectors is a subset of a subspace, then the span of those
vectors is also contained in the subspace. (Contributed by Mario
Carneiro, 4-Sep-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
| |
| Theorem | lspsnss 14210 |
The span of the singleton of a subspace member is included in the
subspace. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro,
4-Sep-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| |
| Theorem | lspsnel3 14211 |
A member of the span of the singleton of a vector is a member of a
subspace containing the vector. (Contributed by NM, 4-Jul-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| |
| Theorem | lspprss 14212 |
The span of a pair of vectors in a subspace belongs to the subspace.
(Contributed by NM, 12-Jan-2015.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| |
| Theorem | lspsnid 14213 |
A vector belongs to the span of its singleton. (Contributed by NM,
9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| |
| Theorem | lspsnel6 14214 |
Relationship between a vector and the 1-dim (or 0-dim) subspace it
generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario
Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
| |
| Theorem | lspsnel5 14215 |
Relationship between a vector and the 1-dim (or 0-dim) subspace it
generates. (Contributed by NM, 8-Aug-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| |
| Theorem | lspsnel5a 14216 |
Relationship between a vector and the 1-dim (or 0-dim) subspace it
generates. (Contributed by NM, 20-Feb-2015.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| |
| Theorem | lspprid1 14217 |
A member of a pair of vectors belongs to their span. (Contributed by
NM, 14-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋, 𝑌})) |
| |
| Theorem | lspprid2 14218 |
A member of a pair of vectors belongs to their span. (Contributed by
NM, 14-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋, 𝑌})) |
| |
| Theorem | lspprvacl 14219 |
The sum of two vectors belongs to their span. (Contributed by NM,
20-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{𝑋, 𝑌})) |
| |
| Theorem | lssats2 14220* |
A way to express atomisticity (a subspace is the union of its atoms).
(Contributed by NM, 3-Feb-2015.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑈 = ∪
𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
| |
| Theorem | lspsneli 14221 |
A scalar product with a vector belongs to the span of its singleton.
(Contributed by NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) |
| |
| Theorem | lspsn 14222* |
Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.)
(Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| |
| Theorem | ellspsn 14223* |
Member of span of the singleton of a vector. (Contributed by NM,
22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| |
| Theorem | lspsnvsi 14224 |
Span of a scalar product of a singleton. (Contributed by NM,
23-Apr-2014.) (Proof shortened by Mario Carneiro, 4-Sep-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
| |
| Theorem | lspsnss2 14225* |
Comparable spans of singletons must have proportional vectors.
(Contributed by NM, 7-Jun-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| |
| Theorem | lspsnneg 14226 |
Negation does not change the span of a singleton. (Contributed by NM,
24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑀 = (invg‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑀‘𝑋)}) = (𝑁‘{𝑋})) |
| |
| Theorem | lspsnsub 14227 |
Swapping subtraction order does not change the span of a singleton.
(Contributed by NM, 4-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑌 − 𝑋)})) |
| |
| Theorem | lspsn0 14228 |
Span of the singleton of the zero vector. (Contributed by NM,
15-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
| |
| Theorem | lsp0 14229 |
Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑁‘∅) = { 0 }) |
| |
| Theorem | lspuni0 14230 |
Union of the span of the empty set. (Contributed by NM,
14-Mar-2015.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∪ (𝑁‘∅) = 0 ) |
| |
| Theorem | lspun0 14231 |
The span of a union with the zero subspace. (Contributed by NM,
22-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
| |
| Theorem | lspsneq0 14232 |
Span of the singleton is the zero subspace iff the vector is zero.
(Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
| |
| Theorem | lspsneq0b 14233 |
Equal singleton spans imply both arguments are zero or both are nonzero.
(Contributed by NM, 21-Mar-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 = 0 ↔ 𝑌 = 0 )) |
| |
| Theorem | lmodindp1 14234 |
Two independent (non-colinear) vectors have nonzero sum. (Contributed
by NM, 22-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| |
| Theorem | lsslsp 14235 |
Spans in submodules correspond to spans in the containing module.
(Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were
swapped as proposed by NM on 15-Mar-2015. (Revised by AV,
18-Apr-2025.)
|
| ⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 𝑀 = (LSpan‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑋)
& ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) = (𝑀‘𝐺)) |
| |
| Theorem | lss0v 14236 |
The zero vector in a submodule equals the zero vector in the including
module. (Contributed by NM, 15-Mar-2015.)
|
| ⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑍 = (0g‘𝑋)
& ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
| |
| Theorem | lsspropdg 14237* |
If two structures have the same components (properties), they have the
same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015.)
(Revised by Mario Carneiro, 14-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) & ⊢ (𝜑 → 𝐾 ∈ 𝑋)
& ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) |
| |
| Theorem | lsppropd 14238* |
If two structures have the same components (properties), they have the
same span function. (Contributed by Mario Carneiro, 9-Feb-2015.)
(Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV,
24-Apr-2024.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) & ⊢ (𝜑 → 𝐾 ∈ 𝑋)
& ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| |
| 7.6 Subring algebras and
ideals
|
| |
| 7.6.1 Subring algebras
|
| |
| Syntax | csra 14239 |
Extend class notation with the subring algebra generator.
|
| class subringAlg |
| |
| Syntax | crglmod 14240 |
Extend class notation with the left module induced by a ring over
itself.
|
| class ringLMod |
| |
| Definition | df-sra 14241* |
Any ring can be regarded as a left algebra over any of its subrings.
The function subringAlg associates with any ring
and any of its
subrings the left algebra consisting in the ring itself regarded as a
left algebra over the subring. It has an inner product which is simply
the ring product. (Contributed by Mario Carneiro, 27-Nov-2014.)
(Revised by Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉))) |
| |
| Definition | df-rgmod 14242 |
Any ring can be regarded as a left algebra over itself. The function
ringLMod associates with any ring the left
algebra consisting in the
ring itself regarded as a left algebra over itself. It has an inner
product which is simply the ring product. (Contributed by Stefan
O'Rear, 6-Dec-2014.)
|
| ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
| |
| Theorem | sraval 14243 |
Lemma for srabaseg 14245 through sravscag 14249. (Contributed by Mario
Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| |
| Theorem | sralemg 14244 |
Lemma for srabaseg 14245 and similar theorems. (Contributed by Mario
Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(Revised by AV, 29-Oct-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢
(Scalar‘ndx) ≠ (𝐸‘ndx) & ⊢ (
·𝑠 ‘ndx) ≠ (𝐸‘ndx) & ⊢
(·𝑖‘ndx) ≠ (𝐸‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| |
| Theorem | srabaseg 14245 |
Base set of a subring algebra. (Contributed by Stefan O'Rear,
27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by
Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (Base‘𝑊) = (Base‘𝐴)) |
| |
| Theorem | sraaddgg 14246 |
Additive operation of a subring algebra. (Contributed by Stefan O'Rear,
27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by
Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (+g‘𝑊) = (+g‘𝐴)) |
| |
| Theorem | sramulrg 14247 |
Multiplicative operation of a subring algebra. (Contributed by Stefan
O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.)
(Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV,
29-Oct-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (.r‘𝑊) = (.r‘𝐴)) |
| |
| Theorem | srascag 14248 |
The set of scalars of a subring algebra. (Contributed by Stefan O'Rear,
27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by
Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
| |
| Theorem | sravscag 14249 |
The scalar product operation of a subring algebra. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.)
(Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV,
12-Nov-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (.r‘𝑊) = (
·𝑠 ‘𝐴)) |
| |
| Theorem | sraipg 14250 |
The inner product operation of a subring algebra. (Contributed by
Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (.r‘𝑊) =
(·𝑖‘𝐴)) |
| |
| Theorem | sratsetg 14251 |
Topology component of a subring algebra. (Contributed by Mario
Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(Revised by AV, 29-Oct-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) |
| |
| Theorem | sraex 14252 |
Existence of a subring algebra. (Contributed by Jim Kingdon,
16-Apr-2025.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) |
| |
| Theorem | sratopng 14253 |
Topology component of a subring algebra. (Contributed by Mario
Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴)) |
| |
| Theorem | sradsg 14254 |
Distance function of a subring algebra. (Contributed by Mario Carneiro,
4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV,
29-Oct-2024.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) |
| |
| Theorem | sraring 14255 |
Condition for a subring algebra to be a ring. (Contributed by Thierry
Arnoux, 24-Jul-2023.)
|
| ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
| |
| Theorem | sralmod 14256 |
The subring algebra is a left module. (Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) ⇒ ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod) |
| |
| Theorem | sralmod0g 14257 |
The subring module inherits a zero from its ring. (Contributed by
Stefan O'Rear, 27-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 0 =
(0g‘𝑊)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 0 =
(0g‘𝐴)) |
| |
| Theorem | issubrgd 14258* |
Prove a subring by closure (definition version). (Contributed by Stefan
O'Rear, 7-Dec-2014.)
|
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 =
(0g‘𝐼)) & ⊢ (𝜑 → + =
(+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷)
& ⊢ (𝜑 → 1 =
(1r‘𝐼)) & ⊢ (𝜑 → · =
(.r‘𝐼)) & ⊢ (𝜑 → 1 ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷)
& ⊢ (𝜑 → 𝐼 ∈ Ring)
⇒ ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| |
| Theorem | rlmfn 14259 |
ringLMod is a function. (Contributed by Stefan O'Rear,
6-Dec-2014.)
|
| ⊢ ringLMod Fn V |
| |
| Theorem | rlmvalg 14260 |
Value of the ring module. (Contributed by Stefan O'Rear,
31-Mar-2015.)
|
| ⊢ (𝑊 ∈ 𝑉 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| |
| Theorem | rlmbasg 14261 |
Base set of the ring module. (Contributed by Stefan O'Rear,
31-Mar-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) |
| |
| Theorem | rlmplusgg 14262 |
Vector addition in the ring module. (Contributed by Stefan O'Rear,
31-Mar-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) =
(+g‘(ringLMod‘𝑅))) |
| |
| Theorem | rlm0g 14263 |
Zero vector in the ring module. (Contributed by Stefan O'Rear,
6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑅) =
(0g‘(ringLMod‘𝑅))) |
| |
| Theorem | rlmsubg 14264 |
Subtraction in the ring module. (Contributed by Thierry Arnoux,
30-Jun-2019.)
|
| ⊢ (𝑅 ∈ 𝑉 → (-g‘𝑅) =
(-g‘(ringLMod‘𝑅))) |
| |
| Theorem | rlmmulrg 14265 |
Ring multiplication in the ring module. (Contributed by Mario Carneiro,
6-Oct-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) =
(.r‘(ringLMod‘𝑅))) |
| |
| Theorem | rlmscabas 14266 |
Scalars in the ring module have the same base set. (Contributed by Jim
Kingdon, 29-Apr-2025.)
|
| ⊢ (𝑅 ∈ 𝑋 → (Base‘𝑅) =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
| |
| Theorem | rlmvscag 14267 |
Scalar multiplication in the ring module. (Contributed by Stefan O'Rear,
31-Mar-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) = (
·𝑠 ‘(ringLMod‘𝑅))) |
| |
| Theorem | rlmtopng 14268 |
Topology component of the ring module. (Contributed by Mario Carneiro,
6-Oct-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))) |
| |
| Theorem | rlmdsg 14269 |
Metric component of the ring module. (Contributed by Mario Carneiro,
6-Oct-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘(ringLMod‘𝑅))) |
| |
| Theorem | rlmlmod 14270 |
The ring module is a module. (Contributed by Stefan O'Rear,
6-Dec-2014.)
|
| ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) |
| |
| Theorem | rlmvnegg 14271 |
Vector negation in the ring module. (Contributed by Stefan O'Rear,
6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.)
|
| ⊢ (𝑅 ∈ 𝑉 → (invg‘𝑅) =
(invg‘(ringLMod‘𝑅))) |
| |
| Theorem | ixpsnbasval 14272* |
The value of an infinite Cartesian product of the base of a left module
over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
|
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅))}) |
| |
| 7.6.2 Ideals and spans
|
| |
| Syntax | clidl 14273 |
Ring left-ideal function.
|
| class LIdeal |
| |
| Syntax | crsp 14274 |
Ring span function.
|
| class RSpan |
| |
| Definition | df-lidl 14275 |
Define the class of left ideals of a given ring. An ideal is a submodule
of the ring viewed as a module over itself. (Contributed by Stefan
O'Rear, 31-Mar-2015.)
|
| ⊢ LIdeal = (LSubSp ∘
ringLMod) |
| |
| Definition | df-rsp 14276 |
Define the linear span function in a ring (Ideal generator). (Contributed
by Stefan O'Rear, 4-Apr-2015.)
|
| ⊢ RSpan = (LSpan ∘
ringLMod) |
| |
| Theorem | lidlvalg 14277 |
Value of the set of ring ideals. (Contributed by Stefan O'Rear,
31-Mar-2015.)
|
| ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) |
| |
| Theorem | rspvalg 14278 |
Value of the ring span function. (Contributed by Stefan O'Rear,
4-Apr-2015.)
|
| ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) |
| |
| Theorem | lidlex 14279 |
Existence of the set of left ideals. (Contributed by Jim Kingdon,
27-Apr-2025.)
|
| ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) ∈ V) |
| |
| Theorem | rspex 14280 |
Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
|
| ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) ∈ V) |
| |
| Theorem | lidlmex 14281 |
Existence of the set a left ideal is built from (when the ideal is
inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
|
| ⊢ 𝐼 = (LIdeal‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| |
| Theorem | lidlss 14282 |
An ideal is a subset of the base set. (Contributed by Stefan O'Rear,
28-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐼 = (LIdeal‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| |
| Theorem | lidlssbas 14283 |
The base set of the restriction of the ring to a (left) ideal is a
subset of the base set of the ring. (Contributed by AV,
17-Feb-2020.)
|
| ⊢ 𝐿 = (LIdeal‘𝑅)
& ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| |
| Theorem | lidlbas 14284 |
A (left) ideal of a ring is the base set of the restriction of the ring
to this ideal. (Contributed by AV, 17-Feb-2020.)
|
| ⊢ 𝐿 = (LIdeal‘𝑅)
& ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| |
| Theorem | islidlm 14285* |
Predicate of being a (left) ideal. (Contributed by Stefan O'Rear,
1-Apr-2015.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) |
| |
| Theorem | rnglidlmcl 14286 |
A (left) ideal containing the zero element is closed under
left-multiplication by elements of the full non-unital ring. If the
ring is not a unital ring, and the ideal does not contain the zero
element of the ring, then the closure cannot be proven. (Contributed
by AV, 18-Feb-2025.)
|
| ⊢ 0 =
(0g‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋 · 𝑌) ∈ 𝐼) |
| |
| Theorem | dflidl2rng 14287* |
Alternate (the usual textbook) definition of a (left) ideal of a
non-unital ring to be a subgroup of the additive group of the ring which
is closed under left-multiplication by elements of the full ring.
(Contributed by AV, 21-Mar-2025.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
| |
| Theorem | isridlrng 14288* |
A right ideal is a left ideal of the opposite non-unital ring. This
theorem shows that this definition corresponds to the usual textbook
definition of a right ideal of a ring to be a subgroup of the additive
group of the ring which is closed under right-multiplication by elements
of the full ring. (Contributed by AV, 21-Mar-2025.)
|
| ⊢ 𝑈 =
(LIdeal‘(oppr‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| |
| Theorem | lidl0cl 14289 |
An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) |
| |
| Theorem | lidlacl 14290 |
An ideal is closed under addition. (Contributed by Stefan O'Rear,
3-Jan-2015.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ + =
(+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) |
| |
| Theorem | lidlnegcl 14291 |
An ideal contains negatives. (Contributed by Stefan O'Rear,
3-Jan-2015.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) |
| |
| Theorem | lidlsubg 14292 |
An ideal is a subgroup of the additive group. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
| |
| Theorem | lidlsubcl 14293 |
An ideal is closed under subtraction. (Contributed by Stefan O'Rear,
28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ − =
(-g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 − 𝑌) ∈ 𝐼) |
| |
| Theorem | dflidl2 14294* |
Alternate (the usual textbook) definition of a (left) ideal of a ring to
be a subgroup of the additive group of the ring which is closed under
left-multiplication by elements of the full ring. (Contributed by AV,
13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼))) |
| |
| Theorem | lidl0 14295 |
Every ring contains a zero ideal. (Contributed by Stefan O'Rear,
3-Jan-2015.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) |
| |
| Theorem | lidl1 14296 |
Every ring contains a unit ideal. (Contributed by Stefan O'Rear,
3-Jan-2015.)
|
| ⊢ 𝑈 = (LIdeal‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) |
| |
| Theorem | rspcl 14297 |
The span of a set of ring elements is an ideal. (Contributed by
Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro,
2-Oct-2015.)
|
| ⊢ 𝐾 = (RSpan‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) |
| |
| Theorem | rspssid 14298 |
The span of a set of ring elements contains those elements.
(Contributed by Stefan O'Rear, 3-Jan-2015.)
|
| ⊢ 𝐾 = (RSpan‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (𝐾‘𝐺)) |
| |
| Theorem | rsp0 14299 |
The span of the zero element is the zero ideal. (Contributed by
Stefan O'Rear, 3-Jan-2015.)
|
| ⊢ 𝐾 = (RSpan‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 }) |
| |
| Theorem | rspssp 14300 |
The ideal span of a set of elements in a ring is contained in any
subring which contains those elements. (Contributed by Stefan O'Rear,
3-Jan-2015.)
|
| ⊢ 𝐾 = (RSpan‘𝑅)
& ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) |