Theorem List for Intuitionistic Logic Explorer - 14201-14300 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | domneq0 14201 |
In a domain, a product is zero iff it has a zero factor. (Contributed
by Mario Carneiro, 28-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| |
| Theorem | domnmuln0 14202 |
In a domain, a product of nonzero elements is nonzero. (Contributed by
Mario Carneiro, 6-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| |
| Theorem | opprdomnbg 14203 |
A class is a domain if and only if its opposite is a domain,
biconditional form of opprdomn 14204. (Contributed by SN, 15-Jun-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn)) |
| |
| Theorem | opprdomn 14204 |
The opposite of a domain is also a domain. (Contributed by Mario
Carneiro, 15-Jun-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ Domn → 𝑂 ∈ Domn) |
| |
| Theorem | isidom 14205 |
An integral domain is a commutative domain. (Contributed by Mario
Carneiro, 17-Jun-2015.)
|
| ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| |
| Theorem | idomdomd 14206 |
An integral domain is a domain. (Contributed by Thierry Arnoux,
22-Mar-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ Domn) |
| |
| Theorem | idomcringd 14207 |
An integral domain is a commutative ring with unity. (Contributed by
Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) |
| |
| Theorem | idomringd 14208 |
An integral domain is a ring. (Contributed by Thierry Arnoux,
22-Mar-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) |
| |
| 7.4 Division rings and
fields
|
| |
| 7.4.1 Ring apartness
|
| |
| Syntax | capr 14209 |
Extend class notation with ring apartness.
|
| class #r |
| |
| Definition | df-apr 14210* |
The relation between elements whose difference is invertible, which for
a local ring is an apartness relation by aprap 14215. (Contributed by Jim
Kingdon, 13-Feb-2025.)
|
| ⊢ #r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g‘𝑤)𝑦) ∈ (Unit‘𝑤))}) |
| |
| Theorem | aprval 14211 |
Expand Definition df-apr 14210. (Contributed by Jim Kingdon,
17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → − =
(-g‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 − 𝑌) ∈ 𝑈)) |
| |
| Theorem | aprirr 14212 |
The apartness relation given by df-apr 14210 for a nonzero ring is
irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) ⇒ ⊢ (𝜑 → ¬ 𝑋 # 𝑋) |
| |
| Theorem | aprsym 14213 |
The apartness relation given by df-apr 14210 for a ring is symmetric.
(Contributed by Jim Kingdon, 17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
| |
| Theorem | aprcotr 14214 |
The apartness relation given by df-apr 14210 for a local ring is
cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ LRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍))) |
| |
| Theorem | aprap 14215 |
The relation given by df-apr 14210 for a local ring is an apartness
relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
|
| ⊢ (𝑅 ∈ LRing →
(#r‘𝑅) Ap
(Base‘𝑅)) |
| |
| 7.5 Left modules
|
| |
| 7.5.1 Definition and basic
properties
|
| |
| Syntax | clmod 14216 |
Extend class notation with class of all left modules.
|
| class LMod |
| |
| Syntax | cscaf 14217 |
The functionalization of the scalar multiplication operation.
|
| class
·sf |
| |
| Definition | df-lmod 14218* |
Define the class of all left modules, which are generalizations of left
vector spaces. A left module over a ring is an (Abelian) group
(vectors) together with a ring (scalars) and a left scalar product
connecting them. (Contributed by NM, 4-Nov-2013.)
|
| ⊢ LMod = {𝑔 ∈ Grp ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
| |
| Definition | df-scaf 14219* |
Define the functionalization of the ·𝑠 operator. This restricts
the
value of ·𝑠 to
the stated domain, which is necessary when working
with restricted structures, whose operations may be defined on a larger
set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ ·sf =
(𝑔 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠
‘𝑔)𝑦))) |
| |
| Theorem | islmod 14220* |
The predicate "is a left module". (Contributed by NM, 4-Nov-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
| |
| Theorem | lmodlema 14221 |
Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) |
| |
| Theorem | islmodd 14222* |
Properties that determine a left module. See note in isgrpd2 13520
regarding the 𝜑 on hypotheses that name structure
components.
(Contributed by Mario Carneiro, 22-Jun-2014.)
|
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ =
(+g‘𝐹)) & ⊢ (𝜑 → × =
(.r‘𝐹)) & ⊢ (𝜑 → 1 =
(1r‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) |
| |
| Theorem | lmodgrp 14223 |
A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by
Mario Carneiro, 25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| |
| Theorem | lmodring 14224 |
The scalar component of a left module is a ring. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| |
| Theorem | lmodfgrp 14225 |
The scalar component of a left module is an additive group.
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| |
| Theorem | lmodgrpd 14226 |
A left module is a group. (Contributed by SN, 16-May-2024.)
|
| ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) |
| |
| Theorem | lmodbn0 14227 |
The base set of a left module is nonempty. It is also inhabited (by
lmod0vcl 14246). (Contributed by NM, 8-Dec-2013.)
(Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodacl 14228 |
Closure of ring addition for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ + =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodmcl 14229 |
Closure of ring multiplication for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodsn0 14230 |
The set of scalars in a left module is nonempty. It is also inhabited,
by lmod0cl 14243. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodvacl 14231 |
Closure of vector addition for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodass 14232 |
Left module vector sum is associative. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| |
| Theorem | lmodlcan 14233 |
Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | lmodvscl 14234 |
Closure of scalar product for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| |
| Theorem | scaffvalg 14235* |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| |
| Theorem | scafvalg 14236 |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
| |
| Theorem | scafeqg 14237 |
If the scalar multiplication operation is already a function, the
functionalization of it is equal to the original operation.
(Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = ·
) |
| |
| Theorem | scaffng 14238 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| |
| Theorem | lmodscaf 14239 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| |
| Theorem | lmodvsdi 14240 |
Distributive law for scalar product (left-distributivity). (Contributed
by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
| |
| Theorem | lmodvsdir 14241 |
Distributive law for scalar product (right-distributivity).
(Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro,
22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| |
| Theorem | lmodvsass 14242 |
Associative law for scalar product. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ × =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| |
| Theorem | lmod0cl 14243 |
The ring zero in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| |
| Theorem | lmod1cl 14244 |
The ring unity in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
| |
| Theorem | lmodvs1 14245 |
Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| |
| Theorem | lmod0vcl 14246 |
The zero vector is a vector. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
| |
| Theorem | lmod0vlid 14247 |
Left identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| |
| Theorem | lmod0vrid 14248 |
Right identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
| |
| Theorem | lmod0vid 14249 |
Identity equivalent to the value of the zero vector. Provides a
convenient way to compute the value. (Contributed by NM, 9-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| |
| Theorem | lmod0vs 14250 |
Zero times a vector is the zero vector. Equation 1a of [Kreyszig]
p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑂 = (0g‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| |
| Theorem | lmodvs0 14251 |
Anything times the zero vector is the zero vector. Equation 1b of
[Kreyszig] p. 51. (Contributed by NM,
12-Jan-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| |
| Theorem | lmodvsmmulgdi 14252 |
Distributive law for a group multiple of a scalar multiplication.
(Contributed by AV, 2-Sep-2019.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ↑ =
(.g‘𝑊)
& ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)) |
| |
| Theorem | lmodfopnelem1 14253 |
Lemma 1 for lmodfopne 14255. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| |
| Theorem | lmodfopnelem2 14254 |
Lemma 2 for lmodfopne 14255. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
| |
| Theorem | lmodfopne 14255 |
The (functionalized) operations of a left module (over a nonzero ring)
cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV,
2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ ·
) |
| |
| Theorem | lcomf 14256 |
A linear-combination sum is a function. (Contributed by Stefan O'Rear,
28-Feb-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐵 = (Base‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐾)
& ⊢ (𝜑 → 𝐻:𝐼⟶𝐵)
& ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
| |
| Theorem | lmodvnegcl 14257 |
Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) |
| |
| Theorem | lmodvnegid 14258 |
Addition of a vector with its negative. (Contributed by NM,
18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| |
| Theorem | lmodvneg1 14259 |
Minus 1 times a vector is the negative of the vector. Equation 2 of
[Kreyszig] p. 51. (Contributed by NM,
18-Apr-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| |
| Theorem | lmodvsneg 14260 |
Multiplication of a vector by a negated scalar. (Contributed by Stefan
O'Rear, 28-Feb-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| |
| Theorem | lmodvsubcl 14261 |
Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodcom 14262 |
Left module vector sum is commutative. (Contributed by Gérard
Lang, 25-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| |
| Theorem | lmodabl 14263 |
A left module is an abelian group (of vectors, under addition).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| |
| Theorem | lmodcmn 14264 |
A left module is a commutative monoid under addition. (Contributed by
NM, 7-Jan-2015.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) |
| |
| Theorem | lmodnegadd 14265 |
Distribute negation through addition of scalar products. (Contributed
by NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝑅 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑅)
& ⊢ 𝐼 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| |
| Theorem | lmod4 14266 |
Commutative/associative law for left module vector sum. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈))) |
| |
| Theorem | lmodvsubadd 14267 |
Relationship between vector subtraction and addition. (Contributed by
NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | lmodvaddsub4 14268 |
Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 − 𝐶) = (𝐷 − 𝐵))) |
| |
| Theorem | lmodvpncan 14269 |
Addition/subtraction cancellation law for vectors. (Contributed by NM,
16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| |
| Theorem | lmodvnpcan 14270 |
Cancellation law for vector subtraction (Contributed by NM,
19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| |
| Theorem | lmodvsubval2 14271 |
Value of vector subtraction in terms of addition. (Contributed by NM,
31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
| |
| Theorem | lmodsubvs 14272 |
Subtraction of a scalar product in terms of addition. (Contributed by
NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| |
| Theorem | lmodsubdi 14273 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) |
| |
| Theorem | lmodsubdir 14274 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (-g‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| |
| Theorem | lmodsubeq0 14275 |
If the difference between two vectors is zero, they are equal.
(Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | lmodsubid 14276 |
Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉) → (𝐴 − 𝐴) = 0 ) |
| |
| Theorem | lmodprop2d 14277* |
If two structures have the same components (properties), one is a left
module iff the other one is. This version of lmodpropd 14278 also breaks up
the components of the scalar ring. (Contributed by Mario Carneiro,
27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | lmodpropd 14278* |
If two structures have the same components (properties), one is a left
module iff the other one is. (Contributed by Mario Carneiro,
8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | rmodislmodlem 14279* |
Lemma for rmodislmod 14280. This is the part of the proof of rmodislmod 14280
which requires the scalar ring to be commutative. (Contributed by AV,
3-Dec-2021.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ ((𝐹 ∈ CRing ∧ (𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 × 𝑏) ∗ 𝑐) = (𝑎 ∗ (𝑏 ∗ 𝑐))) |
| |
| Theorem | rmodislmod 14280* |
The right module 𝑅 induces a left module 𝐿 by
replacing the
scalar multiplication with a reversed multiplication if the scalar ring
is commutative. The hypothesis "rmodislmod.r" is a definition
of a
right module analogous to Definition df-lmod 14218 of a left module, see
also islmod 14220. (Contributed by AV, 3-Dec-2021.) (Proof
shortened by
AV, 18-Oct-2024.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) |
| |
| 7.5.2 Subspaces and spans in a left
module
|
| |
| Syntax | clss 14281 |
Extend class notation with linear subspaces of a left module or left
vector space.
|
| class LSubSp |
| |
| Definition | df-lssm 14282* |
A linear subspace of a left module or left vector space is an inhabited
(in contrast to non-empty for non-intuitionistic logic) subset of the
base set of the left-module/vector space with a closure condition on
vector addition and scalar multiplication. (Contributed by NM,
8-Dec-2013.)
|
| ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
| |
| Theorem | lssex 14283 |
Existence of a linear subspace. (Contributed by Jim Kingdon,
27-Apr-2025.)
|
| ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| |
| Theorem | lssmex 14284 |
If a linear subspace is inhabited, the class it is built from is a set.
(Contributed by Jim Kingdon, 28-Apr-2025.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| |
| Theorem | lsssetm 14285* |
The set of all (not necessarily closed) linear subspaces of a left
module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario Carneiro, 15-Jul-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
| |
| Theorem | islssm 14286* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
| |
| Theorem | islssmg 14287* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.) Use islssm 14286 instead. (New usage is discouraged.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
| |
| Theorem | islssmd 14288* |
Properties that determine a subspace of a left module or left vector
space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉)
& ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
& ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| |
| Theorem | lssssg 14289 |
A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
| |
| Theorem | lsselg 14290 |
A subspace member is a vector. (Contributed by NM, 11-Jan-2014.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| |
| Theorem | lss1 14291 |
The set of vectors in a left module is a subspace. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| |
| Theorem | lssuni 14292 |
The union of all subspaces is the vector space. (Contributed by NM,
13-Mar-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| |
| Theorem | lssclg 14293 |
Closure property of a subspace. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvacl 14294 |
Closure of vector addition in a subspace. (Contributed by NM,
11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvsubcl 14295 |
Closure of vector subtraction in a subspace. (Contributed by NM,
31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvancl1 14296 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 14-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvancl2 14297 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 20-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈) |
| |
| Theorem | lss0cl 14298 |
The zero vector belongs to every subspace. (Contributed by NM,
12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
| |
| Theorem | lsssn0 14299 |
The singleton of the zero vector is a subspace. (Contributed by NM,
13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
| |
| Theorem | lss0ss 14300 |
The zero subspace is included in every subspace. (Contributed by NM,
27-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆) → { 0 } ⊆ 𝑋) |