Home | Intuitionistic Logic Explorer Theorem List (p. 143 of 144) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | setindis 14201* | Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) ⇒ ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) | ||
Axiom | ax-bdsetind 14202* | Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) | ||
Theorem | bdsetindis 14203* | Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) ⇒ ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) | ||
Theorem | bj-inf2vnlem1 14204* | Lemma for bj-inf2vn 14208. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) | ||
Theorem | bj-inf2vnlem2 14205* | Lemma for bj-inf2vnlem3 14206 and bj-inf2vnlem4 14207. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)))) | ||
Theorem | bj-inf2vnlem3 14206* | Lemma for bj-inf2vn 14208. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝑍 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) | ||
Theorem | bj-inf2vnlem4 14207* | Lemma for bj-inf2vn2 14209. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) | ||
Theorem | bj-inf2vn 14208* | A sufficient condition for ω to be a set. See bj-inf2vn2 14209 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) | ||
Theorem | bj-inf2vn2 14209* | A sufficient condition for ω to be a set; unbounded version of bj-inf2vn 14208. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) | ||
Axiom | ax-inf2 14210* | Another axiom of infinity in a constructive setting (see ax-infvn 14175). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.) |
⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | ||
Theorem | bj-omex2 14211 | Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 14175 (see bj-2inf 14172 for the equivalence of the latter with bj-omex 14176). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ω ∈ V | ||
Theorem | bj-nn0sucALT 14212* | Alternate proof of bj-nn0suc 14198, also constructive but from ax-inf2 14210, hence requiring ax-bdsetind 14202. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
In this section, using the axiom of set induction, we prove full induction on the set of natural numbers. | ||
Theorem | bj-findis 14213* | Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 14181 for a bounded version not requiring ax-setind 4530. See finds 4593 for a proof in IZF. From this version, it is easy to prove of finds 4593, finds2 4594, finds1 4595. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) | ||
Theorem | bj-findisg 14214* | Version of bj-findis 14213 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 14213 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜏 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) | ||
Theorem | bj-findes 14215 | Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 14213 for explanations. From this version, it is easy to prove findes 4596. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) | ||
In this section, we state the axiom scheme of strong collection, which is part of CZF set theory. | ||
Axiom | ax-strcoll 14216* | Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that 𝜑 represents a multivalued function on 𝑎, or equivalently a collection of nonempty classes indexed by 𝑎, and the axiom asserts the existence of a set 𝑏 which "collects" at least one element in the image of each 𝑥 ∈ 𝑎 and which is made only of such elements. That second conjunct is what makes it "strong", compared to the axiom scheme of collection ax-coll 4113. (Contributed by BJ, 5-Oct-2019.) |
⊢ ∀𝑎(∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | strcoll2 14217* | Version of ax-strcoll 14216 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | strcollnft 14218* | Closed form of strcollnf 14219. (Contributed by BJ, 21-Oct-2019.) |
⊢ (∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) | ||
Theorem | strcollnf 14219* |
Version of ax-strcoll 14216 with one disjoint variable condition
removed,
the other disjoint variable condition replaced with a nonfreeness
hypothesis, and without initial universal quantifier. Version of
strcoll2 14217 with the disjoint variable condition on
𝑏, 𝜑 replaced
with a nonfreeness hypothesis.
This proof aims to demonstrate a standard technique, but strcoll2 14217 will generally suffice: since the theorem asserts the existence of a set 𝑏, supposing that that setvar does not occur in the already defined 𝜑 is not a big constraint. (Contributed by BJ, 21-Oct-2019.) |
⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | strcollnfALT 14220* | Alternate proof of strcollnf 14219, not using strcollnft 14218. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | ||
In this section, we state the axiom scheme of subset collection, which is part of CZF set theory. | ||
Axiom | ax-sscoll 14221* | Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that 𝜑 represents a multivalued function from 𝑎 to 𝑏, or equivalently a collection of nonempty subsets of 𝑏 indexed by 𝑎, and the consequent asserts the existence of a subset of 𝑐 which "collects" at least one element in the image of each 𝑥 ∈ 𝑎 and which is made only of such elements. The axiom asserts the existence, for any sets 𝑎, 𝑏, of a set 𝑐 such that that implication holds for any value of the parameter 𝑧 of 𝜑. (Contributed by BJ, 5-Oct-2019.) |
⊢ ∀𝑎∀𝑏∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Theorem | sscoll2 14222* | Version of ax-sscoll 14221 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.) |
⊢ ∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) | ||
Axiom | ax-ddkcomp 14223 | Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then Axiom ax-ddkcomp 14223 should be used in place of construction specific results. In particular, axcaucvg 7874 should be proved from it. (Contributed by BJ, 24-Oct-2021.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐵) → 𝑥 ≤ 𝐵))) | ||
Theorem | nnnotnotr 14224 | Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 850, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.) |
⊢ ¬ ¬ (¬ ¬ 𝜑 → 𝜑) | ||
Theorem | ss1oel2o 14225 | Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4193 which more directly illustrates the contrast with el2oss1o 6434. (Contributed by Jim Kingdon, 8-Aug-2022.) |
⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) | ||
Theorem | nnti 14226 | Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.) |
⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢))) | ||
Theorem | 012of 14227 | Mapping zero and one between ℕ0 and ω style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (◡𝐺 ↾ {0, 1}):{0, 1}⟶2o | ||
Theorem | 2o01f 14228 | Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} | ||
Theorem | pwtrufal 14229 | A subset of the singleton {∅} cannot be anything other than ∅ or {∅}. Removing the double negation would change the meaning, as seen at exmid01 4193. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4191), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.) |
⊢ (𝐴 ⊆ {∅} → ¬ ¬ (𝐴 = ∅ ∨ 𝐴 = {∅})) | ||
Theorem | pwle2 14230* | An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → 𝑁 ⊆ 2o) | ||
Theorem | pwf1oexmid 14231* | An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2o ∧ EXMID))) | ||
Theorem | exmid1stab 14232* | If any proposition is stable, excluded middle follows. We are thinking of 𝑥 as a proposition and 𝑥 = {∅} as "x is true". (Contributed by Jim Kingdon, 28-Nov-2023.) |
⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) ⇒ ⊢ (𝜑 → EXMID) | ||
Theorem | subctctexmid 14233* | If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.) |
⊢ (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o))) & ⊢ (𝜑 → ω ∈ Markov) ⇒ ⊢ (𝜑 → EXMID) | ||
Theorem | sssneq 14234* | Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.) |
⊢ (𝐴 ⊆ {𝐵} → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) | ||
Theorem | pw1nct 14235* | A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
⊢ (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o)) | ||
Theorem | 0nninf 14236 | The zero element of ℕ∞ (the constant sequence equal to ∅). (Contributed by Jim Kingdon, 14-Jul-2022.) |
⊢ (ω × {∅}) ∈ ℕ∞ | ||
Theorem | nnsf 14237* | Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ 𝑆:ℕ∞⟶ℕ∞ | ||
Theorem | peano4nninf 14238* | The successor function on ℕ∞ is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ 𝑆:ℕ∞–1-1→ℕ∞ | ||
Theorem | peano3nninf 14239* | The successor function on ℕ∞ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ (𝐴 ∈ ℕ∞ → (𝑆‘𝐴) ≠ (𝑥 ∈ ω ↦ ∅)) | ||
Theorem | nninfalllem1 14240* | Lemma for nninfall 14241. (Contributed by Jim Kingdon, 1-Aug-2022.) |
⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o) & ⊢ (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = 1o) & ⊢ (𝜑 → 𝑃 ∈ ℕ∞) & ⊢ (𝜑 → (𝑄‘𝑃) = ∅) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ω (𝑃‘𝑛) = 1o) | ||
Theorem | nninfall 14241* | Given a decidable predicate on ℕ∞, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which 𝑄 is a decidable predicate is that it assigns a value of either ∅ or 1o (which can be thought of as false and true) to every element of ℕ∞. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.) |
⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o) & ⊢ (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = 1o) ⇒ ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) | ||
Theorem | nninfsellemdc 14242* | Lemma for nninfself 14245. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.) |
⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → DECID ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o) | ||
Theorem | nninfsellemcl 14243* | Lemma for nninfself 14245. (Contributed by Jim Kingdon, 8-Aug-2022.) |
⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) | ||
Theorem | nninfsellemsuc 14244* | Lemma for nninfself 14245. (Contributed by Jim Kingdon, 6-Aug-2022.) |
⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅)) | ||
Theorem | nninfself 14245* | Domain and range of the selection function for ℕ∞. (Contributed by Jim Kingdon, 6-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) ⇒ ⊢ 𝐸:(2o ↑𝑚 ℕ∞)⟶ℕ∞ | ||
Theorem | nninfsellemeq 14246* | Lemma for nninfsel 14249. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∀𝑘 ∈ 𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o) & ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) = ∅) ⇒ ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) | ||
Theorem | nninfsellemqall 14247* | Lemma for nninfsel 14249. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) = 1o) | ||
Theorem | nninfsellemeqinf 14248* | Lemma for nninfsel 14249. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) ⇒ ⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ 1o)) | ||
Theorem | nninfsel 14249* | 𝐸 is a selection function for ℕ∞. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) & ⊢ (𝜑 → 𝑄 ∈ (2o ↑𝑚 ℕ∞)) & ⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) ⇒ ⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) | ||
Theorem | nninfomnilem 14250* | Lemma for nninfomni 14251. (Contributed by Jim Kingdon, 10-Aug-2022.) |
⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) ⇒ ⊢ ℕ∞ ∈ Omni | ||
Theorem | nninfomni 14251 | ℕ∞ is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.) |
⊢ ℕ∞ ∈ Omni | ||
Theorem | nninffeq 14252* | Equality of two functions on ℕ∞ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one, ⊢ (𝜑 → ∀𝑛 ∈ suc ω...). (Contributed by Jim Kingdon, 4-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ∞⟶ℕ0) & ⊢ (𝜑 → 𝐺:ℕ∞⟶ℕ0) & ⊢ (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o))) & ⊢ (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | exmidsbthrlem 14253* | Lemma for exmidsbthr 14254. (Contributed by Jim Kingdon, 11-Aug-2022.) |
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | ||
Theorem | exmidsbthr 14254* | The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.) |
⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | ||
Theorem | exmidsbth 14255* |
The Schroeder-Bernstein Theorem is equivalent to excluded middle. This
is Metamath 100 proof #25. The forward direction (isbth 6956) is the
proof of the Schroeder-Bernstein Theorem from the Metamath Proof
Explorer database (in which excluded middle holds), but adapted to use
EXMID as an antecedent rather
than being unconditionally true, as in
the non-intuitionistic proof at
https://us.metamath.org/mpeuni/sbth.html 6956.
The reverse direction (exmidsbthr 14254) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
⊢ (EXMID ↔ ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) | ||
Theorem | sbthomlem 14256 | Lemma for sbthom 14257. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
⊢ (𝜑 → ω ∈ Omni) & ⊢ (𝜑 → 𝑌 ⊆ {∅}) & ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) ⇒ ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) | ||
Theorem | sbthom 14257 | Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 14255 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.) |
⊢ ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID) | ||
Theorem | qdencn 14258* | The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11178 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.) |
⊢ 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)} ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ 𝑄 (abs‘(𝑥 − 𝐴)) < 𝐵) | ||
Theorem | refeq 14259* | Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | triap 14260 | Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵)) | ||
Theorem | isomninnlem 14261* | Lemma for isomninn 14262. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
Theorem | isomninn 14262* | Omniscience stated in terms of natural numbers. Similar to isomnimap 7125 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
Theorem | cvgcmp2nlemabs 14263* | Lemma for cvgcmp2n 14264. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀)) | ||
Theorem | cvgcmp2n 14264* | A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
Theorem | iooref1o 14265 | A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥)))) ⇒ ⊢ 𝐹:ℝ–1-1-onto→(0(,)1) | ||
Theorem | iooreen 14266 | An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.) |
⊢ (0(,)1) ≈ ℝ | ||
Omniscience principles refer to several propositions, most of them weaker than full excluded middle, which do not follow from the axioms of IZF set theory. They are: (0) the Principle of Omniscience (PO), which is another name for excluded middle (see exmidomni 7130), (1) the Limited Principle of Omniscience (LPO) is ω ∈ Omni (see df-omni 7123), (2) the Weak Limited Principle of Omniscience (WLPO) is ω ∈ WOmni (see df-womni 7152), (3) Markov's Principle (MP) is ω ∈ Markov (see df-markov 7140), (4) the Lesser Limited Principle of Omniscience (LLPO) is not yet defined in iset.mm. They also have analytic counterparts each of which follows from the corresponding omniscience principle: (1) Analytic LPO is real number trichotomy, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) (see trilpo 14274), (2) Analytic WLPO is decidability of real number equality, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝDECID 𝑥 = 𝑦 (see redcwlpo 14286), (3) Analytic MP is ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 ≠ 𝑦 → 𝑥 # 𝑦) (see neapmkv 14298), (4) Analytic LLPO is real number dichotomy, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) (most relevant current theorem is maxclpr 11198). | ||
Theorem | trilpolemclim 14267* | Lemma for trilpo 14274. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
Theorem | trilpolemcl 14268* | Lemma for trilpo 14274. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | trilpolemisumle 14269* | Lemma for trilpo 14274. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑍 ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ Σ𝑖 ∈ 𝑍 (1 / (2↑𝑖))) | ||
Theorem | trilpolemgt1 14270* | Lemma for trilpo 14274. The 1 < 𝐴 case. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → ¬ 1 < 𝐴) | ||
Theorem | trilpolemeq1 14271* | Lemma for trilpo 14274. The 𝐴 = 1 case. This is proved by noting that if any (𝐹‘𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 = 1) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) | ||
Theorem | trilpolemlt1 14272* | Lemma for trilpo 14274. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7128 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) | ||
Theorem | trilpolemres 14273* | Lemma for trilpo 14274. The result. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
Theorem | trilpo 14274* |
Real number trichotomy implies the Limited Principle of Omniscience
(LPO). We expect that we'd need some form of countable choice to prove
the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 14272 (which means the sequence contains a zero), trilpolemeq1 14271 (which means the sequence is all ones), and trilpolemgt1 14270 (which is not possible). Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 14260) or that the real numbers are a discrete field (see trirec0 14275). LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10211 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ω ∈ Omni) | ||
Theorem | trirec0 14275* |
Every real number having a reciprocal or equaling zero is equivalent to
real number trichotomy.
This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 14274). (Contributed by Jim Kingdon, 10-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0)) | ||
Theorem | trirec0xor 14276* |
Version of trirec0 14275 with exclusive-or.
The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) | ||
Theorem | apdifflemf 14277 | Lemma for apdiff 14279. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℚ) & ⊢ (𝜑 → 𝑅 ∈ ℚ) & ⊢ (𝜑 → 𝑄 < 𝑅) & ⊢ (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) # (abs‘(𝐴 − 𝑅))) | ||
Theorem | apdifflemr 14278 | Lemma for apdiff 14279. (Contributed by Jim Kingdon, 19-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑆 ∈ ℚ) & ⊢ (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1))) & ⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆)))) ⇒ ⊢ (𝜑 → 𝐴 # 𝑆) | ||
Theorem | apdiff 14279* | The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.) |
⊢ (𝐴 ∈ ℝ → (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞 ≠ 𝑟 → (abs‘(𝐴 − 𝑞)) # (abs‘(𝐴 − 𝑟))))) | ||
Theorem | iswomninnlem 14280* | Lemma for iswomnimap 7154. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
Theorem | iswomninn 14281* | Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7154 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
Theorem | iswomni0 14282* | Weak omniscience stated in terms of equality with 0. Like iswomninn 14281 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) | ||
Theorem | ismkvnnlem 14283* | Lemma for ismkvnn 14284. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
Theorem | ismkvnn 14284* | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
Theorem | redcwlpolemeq1 14285* | Lemma for redcwlpo 14286. A biconditionalized version of trilpolemeq1 14271. (Contributed by Jim Kingdon, 21-Jun-2024.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
Theorem | redcwlpo 14286* |
Decidability of real number equality implies the Weak Limited Principle
of Omniscience (WLPO). We expect that we'd need some form of countable
choice to prove the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 14285). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones. Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO". WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10215 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
Theorem | tridceq 14287* | Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 14274 and redcwlpo 14286). Thus, this is an analytic analogue to lpowlpo 7156. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) | ||
Theorem | redc0 14288* | Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0) | ||
Theorem | reap0 14289* | Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0) | ||
Theorem | dceqnconst 14290* | Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 14286 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.) |
⊢ (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
Theorem | dcapnconst 14291* |
Decidability of real number apartness implies the existence of a certain
non-constant function from real numbers to integers. Variation of
Exercise 11.6(i) of [HoTT], p. (varies).
See trilpo 14274 for more
discussion of decidability of real number apartness.
This is a weaker form of dceqnconst 14290 and in fact this theorem can be proved using dceqnconst 14290 as shown at dcapnconstALT 14292. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
Theorem | dcapnconstALT 14292* | Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 14291 by means of dceqnconst 14290. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
Theorem | nconstwlpolem0 14293* | Lemma for nconstwlpo 14296. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | nconstwlpolemgt0 14294* | Lemma for nconstwlpo 14296. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) & ⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐺‘𝑥) = 1) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
Theorem | nconstwlpolem 14295* | Lemma for nconstwlpo 14296. (Contributed by Jim Kingdon, 23-Jul-2024.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℤ) & ⊢ (𝜑 → (𝐹‘0) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) & ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0)) | ||
Theorem | nconstwlpo 14296* | Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℤ) & ⊢ (𝜑 → (𝐹‘0) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) ⇒ ⊢ (𝜑 → ω ∈ WOmni) | ||
Theorem | neapmkvlem 14297* | Lemma for neapmkv 14298. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ ((𝜑 ∧ 𝐴 ≠ 1) → 𝐴 # 1) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0)) | ||
Theorem | neapmkv 14298* | If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.) |
⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) | ||
Theorem | supfz 14299 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
Theorem | inffz 14300 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |