ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgmex GIF version

Theorem rrgmex 13741
Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
Hypothesis
Ref Expression
rrgmex.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
rrgmex (𝐴𝐸𝑅 ∈ V)

Proof of Theorem rrgmex
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4784 . . . 4 Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
2 df-rlreg 13738 . . . . 5 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
32releqi 4738 . . . 4 (Rel RLReg ↔ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))}))
41, 3mpbir 146 . . 3 Rel RLReg
5 rrgmex.e . . . . 5 𝐸 = (RLReg‘𝑅)
65eleq2i 2260 . . . 4 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
76biimpi 120 . . 3 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
8 relelfvdm 5578 . . 3 ((Rel RLReg ∧ 𝐴 ∈ (RLReg‘𝑅)) → 𝑅 ∈ dom RLReg)
94, 7, 8sylancr 414 . 2 (𝐴𝐸𝑅 ∈ dom RLReg)
109elexd 2773 1 (𝐴𝐸𝑅 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  cmpt 4090  dom cdm 4655  Rel wrel 4660  cfv 5246  (class class class)co 5910  Basecbs 12608  .rcmulr 12686  0gc0g 12857  RLRegcrlreg 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4661  df-rel 4662  df-dm 4665  df-iota 5207  df-fv 5254  df-rlreg 13738
This theorem is referenced by:  rrgval  13742
  Copyright terms: Public domain W3C validator