ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgmex GIF version

Theorem rrgmex 14233
Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
Hypothesis
Ref Expression
rrgmex.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
rrgmex (𝐴𝐸𝑅 ∈ V)

Proof of Theorem rrgmex
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4850 . . . 4 Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
2 df-rlreg 14230 . . . . 5 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
32releqi 4802 . . . 4 (Rel RLReg ↔ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))}))
41, 3mpbir 146 . . 3 Rel RLReg
5 rrgmex.e . . . . 5 𝐸 = (RLReg‘𝑅)
65eleq2i 2296 . . . 4 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
76biimpi 120 . . 3 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
8 relelfvdm 5661 . . 3 ((Rel RLReg ∧ 𝐴 ∈ (RLReg‘𝑅)) → 𝑅 ∈ dom RLReg)
94, 7, 8sylancr 414 . 2 (𝐴𝐸𝑅 ∈ dom RLReg)
109elexd 2813 1 (𝐴𝐸𝑅 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  cmpt 4145  dom cdm 4719  Rel wrel 4724  cfv 5318  (class class class)co 6007  Basecbs 13040  .rcmulr 13119  0gc0g 13297  RLRegcrlreg 14227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-dm 4729  df-iota 5278  df-fv 5326  df-rlreg 14230
This theorem is referenced by:  rrgval  14234
  Copyright terms: Public domain W3C validator