| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rrgmex | GIF version | ||
| Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.) |
| Ref | Expression |
|---|---|
| rrgmex.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| Ref | Expression |
|---|---|
| rrgmex | ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4850 | . . . 4 ⊢ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | |
| 2 | df-rlreg 14230 | . . . . 5 ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | |
| 3 | 2 | releqi 4802 | . . . 4 ⊢ (Rel RLReg ↔ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))})) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel RLReg |
| 5 | rrgmex.e | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 6 | 5 | eleq2i 2296 | . . . 4 ⊢ (𝐴 ∈ 𝐸 ↔ 𝐴 ∈ (RLReg‘𝑅)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ 𝐸 → 𝐴 ∈ (RLReg‘𝑅)) |
| 8 | relelfvdm 5661 | . . 3 ⊢ ((Rel RLReg ∧ 𝐴 ∈ (RLReg‘𝑅)) → 𝑅 ∈ dom RLReg) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ dom RLReg) |
| 10 | 9 | elexd 2813 | 1 ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 Vcvv 2799 ↦ cmpt 4145 dom cdm 4719 Rel wrel 4724 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 .rcmulr 13119 0gc0g 13297 RLRegcrlreg 14227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-xp 4725 df-rel 4726 df-dm 4729 df-iota 5278 df-fv 5326 df-rlreg 14230 |
| This theorem is referenced by: rrgval 14234 |
| Copyright terms: Public domain | W3C validator |