ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgmex GIF version

Theorem rrgmex 14210
Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
Hypothesis
Ref Expression
rrgmex.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
rrgmex (𝐴𝐸𝑅 ∈ V)

Proof of Theorem rrgmex
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4847 . . . 4 Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
2 df-rlreg 14207 . . . . 5 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
32releqi 4799 . . . 4 (Rel RLReg ↔ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))}))
41, 3mpbir 146 . . 3 Rel RLReg
5 rrgmex.e . . . . 5 𝐸 = (RLReg‘𝑅)
65eleq2i 2296 . . . 4 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
76biimpi 120 . . 3 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
8 relelfvdm 5655 . . 3 ((Rel RLReg ∧ 𝐴 ∈ (RLReg‘𝑅)) → 𝑅 ∈ dom RLReg)
94, 7, 8sylancr 414 . 2 (𝐴𝐸𝑅 ∈ dom RLReg)
109elexd 2813 1 (𝐴𝐸𝑅 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  cmpt 4144  dom cdm 4716  Rel wrel 4721  cfv 5314  (class class class)co 5994  Basecbs 13018  .rcmulr 13097  0gc0g 13275  RLRegcrlreg 14204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4722  df-rel 4723  df-dm 4726  df-iota 5274  df-fv 5322  df-rlreg 14207
This theorem is referenced by:  rrgval  14211
  Copyright terms: Public domain W3C validator