ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgmex GIF version

Theorem rrgmex 13793
Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
Hypothesis
Ref Expression
rrgmex.e 𝐸 = (RLReg‘𝑅)
Assertion
Ref Expression
rrgmex (𝐴𝐸𝑅 ∈ V)

Proof of Theorem rrgmex
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4794 . . . 4 Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
2 df-rlreg 13790 . . . . 5 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
32releqi 4746 . . . 4 (Rel RLReg ↔ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))}))
41, 3mpbir 146 . . 3 Rel RLReg
5 rrgmex.e . . . . 5 𝐸 = (RLReg‘𝑅)
65eleq2i 2263 . . . 4 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
76biimpi 120 . . 3 (𝐴𝐸𝐴 ∈ (RLReg‘𝑅))
8 relelfvdm 5590 . . 3 ((Rel RLReg ∧ 𝐴 ∈ (RLReg‘𝑅)) → 𝑅 ∈ dom RLReg)
94, 7, 8sylancr 414 . 2 (𝐴𝐸𝑅 ∈ dom RLReg)
109elexd 2776 1 (𝐴𝐸𝑅 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  cmpt 4094  dom cdm 4663  Rel wrel 4668  cfv 5258  (class class class)co 5922  Basecbs 12654  .rcmulr 12732  0gc0g 12903  RLRegcrlreg 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-dm 4673  df-iota 5219  df-fv 5266  df-rlreg 13790
This theorem is referenced by:  rrgval  13794
  Copyright terms: Public domain W3C validator