| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rrgmex | GIF version | ||
| Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.) |
| Ref | Expression |
|---|---|
| rrgmex.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| Ref | Expression |
|---|---|
| rrgmex | ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4811 | . . . 4 ⊢ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | |
| 2 | df-rlreg 14070 | . . . . 5 ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | |
| 3 | 2 | releqi 4763 | . . . 4 ⊢ (Rel RLReg ↔ Rel (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))})) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel RLReg |
| 5 | rrgmex.e | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 6 | 5 | eleq2i 2273 | . . . 4 ⊢ (𝐴 ∈ 𝐸 ↔ 𝐴 ∈ (RLReg‘𝑅)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ 𝐸 → 𝐴 ∈ (RLReg‘𝑅)) |
| 8 | relelfvdm 5618 | . . 3 ⊢ ((Rel RLReg ∧ 𝐴 ∈ (RLReg‘𝑅)) → 𝑅 ∈ dom RLReg) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ dom RLReg) |
| 10 | 9 | elexd 2787 | 1 ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 Vcvv 2773 ↦ cmpt 4110 dom cdm 4680 Rel wrel 4685 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 .rcmulr 12960 0gc0g 13138 RLRegcrlreg 14067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-xp 4686 df-rel 4687 df-dm 4690 df-iota 5238 df-fv 5285 df-rlreg 14070 |
| This theorem is referenced by: rrgval 14074 |
| Copyright terms: Public domain | W3C validator |