Detailed syntax breakdown of Definition df-inn
| Step | Hyp | Ref
| Expression |
| 1 | | cn 9007 |
. 2
class
ℕ |
| 2 | | c1 7897 |
. . . . . 6
class
1 |
| 3 | | vx |
. . . . . . 7
setvar 𝑥 |
| 4 | 3 | cv 1363 |
. . . . . 6
class 𝑥 |
| 5 | 2, 4 | wcel 2167 |
. . . . 5
wff 1 ∈
𝑥 |
| 6 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 7 | 6 | cv 1363 |
. . . . . . . 8
class 𝑦 |
| 8 | | caddc 7899 |
. . . . . . . 8
class
+ |
| 9 | 7, 2, 8 | co 5925 |
. . . . . . 7
class (𝑦 + 1) |
| 10 | 9, 4 | wcel 2167 |
. . . . . 6
wff (𝑦 + 1) ∈ 𝑥 |
| 11 | 10, 6, 4 | wral 2475 |
. . . . 5
wff
∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 |
| 12 | 5, 11 | wa 104 |
. . . 4
wff (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) |
| 13 | 12, 3 | cab 2182 |
. . 3
class {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 14 | 13 | cint 3875 |
. 2
class ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 15 | 1, 14 | wceq 1364 |
1
wff ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |