Detailed syntax breakdown of Definition df-inn
Step | Hyp | Ref
| Expression |
1 | | cn 8878 |
. 2
class
ℕ |
2 | | c1 7775 |
. . . . . 6
class
1 |
3 | | vx |
. . . . . . 7
setvar 𝑥 |
4 | 3 | cv 1347 |
. . . . . 6
class 𝑥 |
5 | 2, 4 | wcel 2141 |
. . . . 5
wff 1 ∈
𝑥 |
6 | | vy |
. . . . . . . . 9
setvar 𝑦 |
7 | 6 | cv 1347 |
. . . . . . . 8
class 𝑦 |
8 | | caddc 7777 |
. . . . . . . 8
class
+ |
9 | 7, 2, 8 | co 5853 |
. . . . . . 7
class (𝑦 + 1) |
10 | 9, 4 | wcel 2141 |
. . . . . 6
wff (𝑦 + 1) ∈ 𝑥 |
11 | 10, 6, 4 | wral 2448 |
. . . . 5
wff
∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 |
12 | 5, 11 | wa 103 |
. . . 4
wff (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) |
13 | 12, 3 | cab 2156 |
. . 3
class {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
14 | 13 | cint 3831 |
. 2
class ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
15 | 1, 14 | wceq 1348 |
1
wff ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |