Detailed syntax breakdown of Definition df-inn
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cn 8990 | 
. 2
class
ℕ | 
| 2 |   | c1 7880 | 
. . . . . 6
class
1 | 
| 3 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 4 | 3 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 5 | 2, 4 | wcel 2167 | 
. . . . 5
wff 1 ∈
𝑥 | 
| 6 |   | vy | 
. . . . . . . . 9
setvar 𝑦 | 
| 7 | 6 | cv 1363 | 
. . . . . . . 8
class 𝑦 | 
| 8 |   | caddc 7882 | 
. . . . . . . 8
class 
+ | 
| 9 | 7, 2, 8 | co 5922 | 
. . . . . . 7
class (𝑦 + 1) | 
| 10 | 9, 4 | wcel 2167 | 
. . . . . 6
wff (𝑦 + 1) ∈ 𝑥 | 
| 11 | 10, 6, 4 | wral 2475 | 
. . . . 5
wff
∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 | 
| 12 | 5, 11 | wa 104 | 
. . . 4
wff (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) | 
| 13 | 12, 3 | cab 2182 | 
. . 3
class {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 14 | 13 | cint 3874 | 
. 2
class ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 15 | 1, 14 | wceq 1364 | 
1
wff ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |