Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfnn2 | GIF version |
Description: Definition of the set of positive integers. Another name for df-inn 8879. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
dfnn2 | ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inn 8879 | 1 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∩ cint 3831 (class class class)co 5853 1c1 7775 + caddc 7777 ℕcn 8878 |
This theorem depends on definitions: df-inn 8879 |
This theorem is referenced by: peano5nni 8881 1nn 8889 peano2nn 8890 arch 9132 caucvgre 10945 |
Copyright terms: Public domain | W3C validator |