ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 GIF version

Theorem dfnn2 8522
Description: Definition of the set of positive integers. Another name for df-inn 8521. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 8521 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1296  wcel 1445  {cab 2081  wral 2370   cint 3710  (class class class)co 5690  1c1 7448   + caddc 7450  cn 8520
This theorem depends on definitions:  df-inn 8521
This theorem is referenced by:  peano5nni  8523  1nn  8531  peano2nn  8532  arch  8768  caucvgre  10529
  Copyright terms: Public domain W3C validator