| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnn2 | GIF version | ||
| Description: Definition of the set of positive integers. Another name for df-inn 9008. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
| Ref | Expression |
|---|---|
| dfnn2 | ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inn 9008 | 1 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∩ cint 3875 (class class class)co 5925 1c1 7897 + caddc 7899 ℕcn 9007 |
| This theorem depends on definitions: df-inn 9008 |
| This theorem is referenced by: peano5nni 9010 1nn 9018 peano2nn 9019 arch 9263 caucvgre 11163 |
| Copyright terms: Public domain | W3C validator |