ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 GIF version

Theorem dfnn2 8880
Description: Definition of the set of positive integers. Another name for df-inn 8879. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 8879 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  {cab 2156  wral 2448   cint 3831  (class class class)co 5853  1c1 7775   + caddc 7777  cn 8878
This theorem depends on definitions:  df-inn 8879
This theorem is referenced by:  peano5nni  8881  1nn  8889  peano2nn  8890  arch  9132  caucvgre  10945
  Copyright terms: Public domain W3C validator