ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 GIF version

Theorem dfnn2 9009
Description: Definition of the set of positive integers. Another name for df-inn 9008. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 9008 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  {cab 2182  wral 2475   cint 3875  (class class class)co 5925  1c1 7897   + caddc 7899  cn 9007
This theorem depends on definitions:  df-inn 9008
This theorem is referenced by:  peano5nni  9010  1nn  9018  peano2nn  9019  arch  9263  caucvgre  11163
  Copyright terms: Public domain W3C validator