![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfnn2 | GIF version |
Description: Definition of the set of positive integers. Another name for df-inn 8316. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
dfnn2 | ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inn 8316 | 1 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1285 ∈ wcel 1434 {cab 2069 ∀wral 2353 ∩ cint 3662 (class class class)co 5590 1c1 7253 + caddc 7255 ℕcn 8315 |
This theorem depends on definitions: df-inn 8316 |
This theorem is referenced by: peano5nni 8318 1nn 8326 peano2nn 8327 arch 8561 caucvgre 10240 |
Copyright terms: Public domain | W3C validator |