ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 GIF version

Theorem dfnn2 9058
Description: Definition of the set of positive integers. Another name for df-inn 9057. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 9057 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485   cint 3891  (class class class)co 5957  1c1 7946   + caddc 7948  cn 9056
This theorem depends on definitions:  df-inn 9057
This theorem is referenced by:  peano5nni  9059  1nn  9067  peano2nn  9068  arch  9312  caucvgre  11367
  Copyright terms: Public domain W3C validator