ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 GIF version

Theorem dfnn2 9020
Description: Definition of the set of positive integers. Another name for df-inn 9019. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 9019 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  {cab 2190  wral 2483   cint 3884  (class class class)co 5934  1c1 7908   + caddc 7910  cn 9018
This theorem depends on definitions:  df-inn 9019
This theorem is referenced by:  peano5nni  9021  1nn  9029  peano2nn  9030  arch  9274  caucvgre  11211
  Copyright terms: Public domain W3C validator