ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 GIF version

Theorem dfnn2 9108
Description: Definition of the set of positive integers. Another name for df-inn 9107. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 9107 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508   cint 3922  (class class class)co 6000  1c1 7996   + caddc 7998  cn 9106
This theorem depends on definitions:  df-inn 9107
This theorem is referenced by:  peano5nni  9109  1nn  9117  peano2nn  9118  arch  9362  caucvgre  11487
  Copyright terms: Public domain W3C validator