| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnn2 | GIF version | ||
| Description: Definition of the set of positive integers. Another name for df-inn 9107. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
| Ref | Expression |
|---|---|
| dfnn2 | ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inn 9107 | 1 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∩ cint 3922 (class class class)co 6000 1c1 7996 + caddc 7998 ℕcn 9106 |
| This theorem depends on definitions: df-inn 9107 |
| This theorem is referenced by: peano5nni 9109 1nn 9117 peano2nn 9118 arch 9362 caucvgre 11487 |
| Copyright terms: Public domain | W3C validator |