HomeHome Intuitionistic Logic Explorer
Theorem List (p. 90 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8901-9000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnaddcld 8901 Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 + 𝐵) ∈ ℕ)
 
Theoremnnmulcld 8902 Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
 
Theoremnndivred 8903 A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
4.4.3  Decimal representation of numbers

The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 7756 through df-9 8919), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 7756 and df-1 7757).

Integers can also be exhibited as sums of powers of 10 (e.g., the number 103 can be expressed as ((10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2.

Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12.

 
Syntaxc2 8904 Extend class notation to include the number 2.
class 2
 
Syntaxc3 8905 Extend class notation to include the number 3.
class 3
 
Syntaxc4 8906 Extend class notation to include the number 4.
class 4
 
Syntaxc5 8907 Extend class notation to include the number 5.
class 5
 
Syntaxc6 8908 Extend class notation to include the number 6.
class 6
 
Syntaxc7 8909 Extend class notation to include the number 7.
class 7
 
Syntaxc8 8910 Extend class notation to include the number 8.
class 8
 
Syntaxc9 8911 Extend class notation to include the number 9.
class 9
 
Definitiondf-2 8912 Define the number 2. (Contributed by NM, 27-May-1999.)
2 = (1 + 1)
 
Definitiondf-3 8913 Define the number 3. (Contributed by NM, 27-May-1999.)
3 = (2 + 1)
 
Definitiondf-4 8914 Define the number 4. (Contributed by NM, 27-May-1999.)
4 = (3 + 1)
 
Definitiondf-5 8915 Define the number 5. (Contributed by NM, 27-May-1999.)
5 = (4 + 1)
 
Definitiondf-6 8916 Define the number 6. (Contributed by NM, 27-May-1999.)
6 = (5 + 1)
 
Definitiondf-7 8917 Define the number 7. (Contributed by NM, 27-May-1999.)
7 = (6 + 1)
 
Definitiondf-8 8918 Define the number 8. (Contributed by NM, 27-May-1999.)
8 = (7 + 1)
 
Definitiondf-9 8919 Define the number 9. (Contributed by NM, 27-May-1999.)
9 = (8 + 1)
 
Theorem0ne1 8920 0 ≠ 1 (common case). See aso 1ap0 8484. (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ≠ 1
 
Theorem1ne0 8921 1 ≠ 0. See aso 1ap0 8484. (Contributed by Jim Kingdon, 9-Mar-2020.)
1 ≠ 0
 
Theorem1m1e0 8922 (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
(1 − 1) = 0
 
Theorem2re 8923 The number 2 is real. (Contributed by NM, 27-May-1999.)
2 ∈ ℝ
 
Theorem2cn 8924 The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.)
2 ∈ ℂ
 
Theorem2ex 8925 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
2 ∈ V
 
Theorem2cnd 8926 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 2 ∈ ℂ)
 
Theorem3re 8927 The number 3 is real. (Contributed by NM, 27-May-1999.)
3 ∈ ℝ
 
Theorem3cn 8928 The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.)
3 ∈ ℂ
 
Theorem3ex 8929 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
3 ∈ V
 
Theorem4re 8930 The number 4 is real. (Contributed by NM, 27-May-1999.)
4 ∈ ℝ
 
Theorem4cn 8931 The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
4 ∈ ℂ
 
Theorem5re 8932 The number 5 is real. (Contributed by NM, 27-May-1999.)
5 ∈ ℝ
 
Theorem5cn 8933 The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
5 ∈ ℂ
 
Theorem6re 8934 The number 6 is real. (Contributed by NM, 27-May-1999.)
6 ∈ ℝ
 
Theorem6cn 8935 The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
6 ∈ ℂ
 
Theorem7re 8936 The number 7 is real. (Contributed by NM, 27-May-1999.)
7 ∈ ℝ
 
Theorem7cn 8937 The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
7 ∈ ℂ
 
Theorem8re 8938 The number 8 is real. (Contributed by NM, 27-May-1999.)
8 ∈ ℝ
 
Theorem8cn 8939 The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
8 ∈ ℂ
 
Theorem9re 8940 The number 9 is real. (Contributed by NM, 27-May-1999.)
9 ∈ ℝ
 
Theorem9cn 8941 The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
9 ∈ ℂ
 
Theorem0le0 8942 Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ≤ 0
 
Theorem0le2 8943 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
0 ≤ 2
 
Theorem2pos 8944 The number 2 is positive. (Contributed by NM, 27-May-1999.)
0 < 2
 
Theorem2ne0 8945 The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.)
2 ≠ 0
 
Theorem2ap0 8946 The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
2 # 0
 
Theorem3pos 8947 The number 3 is positive. (Contributed by NM, 27-May-1999.)
0 < 3
 
Theorem3ne0 8948 The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.)
3 ≠ 0
 
Theorem3ap0 8949 The number 3 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
3 # 0
 
Theorem4pos 8950 The number 4 is positive. (Contributed by NM, 27-May-1999.)
0 < 4
 
Theorem4ne0 8951 The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.)
4 ≠ 0
 
Theorem4ap0 8952 The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
4 # 0
 
Theorem5pos 8953 The number 5 is positive. (Contributed by NM, 27-May-1999.)
0 < 5
 
Theorem6pos 8954 The number 6 is positive. (Contributed by NM, 27-May-1999.)
0 < 6
 
Theorem7pos 8955 The number 7 is positive. (Contributed by NM, 27-May-1999.)
0 < 7
 
Theorem8pos 8956 The number 8 is positive. (Contributed by NM, 27-May-1999.)
0 < 8
 
Theorem9pos 8957 The number 9 is positive. (Contributed by NM, 27-May-1999.)
0 < 9
 
4.4.4  Some properties of specific numbers

This includes adding two pairs of values 1..10 (where the right is less than the left) and where the left is less than the right for the values 1..10.

 
Theoremneg1cn 8958 -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
-1 ∈ ℂ
 
Theoremneg1rr 8959 -1 is a real number (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
-1 ∈ ℝ
 
Theoremneg1ne0 8960 -1 is nonzero (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-1 ≠ 0
 
Theoremneg1lt0 8961 -1 is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-1 < 0
 
Theoremneg1ap0 8962 -1 is apart from zero. (Contributed by Jim Kingdon, 9-Jun-2020.)
-1 # 0
 
Theoremnegneg1e1 8963 --1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
--1 = 1
 
Theorem1pneg1e0 8964 1 + -1 is 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + -1) = 0
 
Theorem0m0e0 8965 0 minus 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(0 − 0) = 0
 
Theorem1m0e1 8966 1 - 0 = 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 − 0) = 1
 
Theorem0p1e1 8967 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
(0 + 1) = 1
 
Theoremfv0p1e1 8968 Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
(𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
 
Theorem1p0e1 8969 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + 0) = 1
 
Theorem1p1e2 8970 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
(1 + 1) = 2
 
Theorem2m1e1 8971 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 8998. (Contributed by David A. Wheeler, 4-Jan-2017.)
(2 − 1) = 1
 
Theorem1e2m1 8972 1 = 2 - 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
1 = (2 − 1)
 
Theorem3m1e2 8973 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.)
(3 − 1) = 2
 
Theorem4m1e3 8974 4 - 1 = 3. (Contributed by AV, 8-Feb-2021.) (Proof shortened by AV, 6-Sep-2021.)
(4 − 1) = 3
 
Theorem5m1e4 8975 5 - 1 = 4. (Contributed by AV, 6-Sep-2021.)
(5 − 1) = 4
 
Theorem6m1e5 8976 6 - 1 = 5. (Contributed by AV, 6-Sep-2021.)
(6 − 1) = 5
 
Theorem7m1e6 8977 7 - 1 = 6. (Contributed by AV, 6-Sep-2021.)
(7 − 1) = 6
 
Theorem8m1e7 8978 8 - 1 = 7. (Contributed by AV, 6-Sep-2021.)
(8 − 1) = 7
 
Theorem9m1e8 8979 9 - 1 = 8. (Contributed by AV, 6-Sep-2021.)
(9 − 1) = 8
 
Theorem2p2e4 8980 Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
(2 + 2) = 4
 
Theorem2times 8981 Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
(𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
 
Theoremtimes2 8982 A number times 2. (Contributed by NM, 16-Oct-2007.)
(𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
 
Theorem2timesi 8983 Two times a number. (Contributed by NM, 1-Aug-1999.)
𝐴 ∈ ℂ       (2 · 𝐴) = (𝐴 + 𝐴)
 
Theoremtimes2i 8984 A number times 2. (Contributed by NM, 11-May-2004.)
𝐴 ∈ ℂ       (𝐴 · 2) = (𝐴 + 𝐴)
 
Theorem2div2e1 8985 2 divided by 2 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 / 2) = 1
 
Theorem2p1e3 8986 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.)
(2 + 1) = 3
 
Theorem1p2e3 8987 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + 2) = 3
 
Theorem3p1e4 8988 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.)
(3 + 1) = 4
 
Theorem4p1e5 8989 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
(4 + 1) = 5
 
Theorem5p1e6 8990 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.)
(5 + 1) = 6
 
Theorem6p1e7 8991 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
(6 + 1) = 7
 
Theorem7p1e8 8992 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.)
(7 + 1) = 8
 
Theorem8p1e9 8993 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.)
(8 + 1) = 9
 
Theorem3p2e5 8994 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
(3 + 2) = 5
 
Theorem3p3e6 8995 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
(3 + 3) = 6
 
Theorem4p2e6 8996 4 + 2 = 6. (Contributed by NM, 11-May-2004.)
(4 + 2) = 6
 
Theorem4p3e7 8997 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
(4 + 3) = 7
 
Theorem4p4e8 8998 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
(4 + 4) = 8
 
Theorem5p2e7 8999 5 + 2 = 7. (Contributed by NM, 11-May-2004.)
(5 + 2) = 7
 
Theorem5p3e8 9000 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
(5 + 3) = 8
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >