Theorem List for Intuitionistic Logic Explorer - 8901-9000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | lemul2 8901 |
Multiplication of both sides of 'less than or equal to' by a positive
number. (Contributed by NM, 16-Mar-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) |
| |
| Theorem | lemul1a 8902 |
Multiplication of both sides of 'less than or equal to' by a nonnegative
number. Part of Definition 11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 21-Feb-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| |
| Theorem | lemul2a 8903 |
Multiplication of both sides of 'less than or equal to' by a nonnegative
number. (Contributed by Paul Chapman, 7-Sep-2007.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) |
| |
| Theorem | ltmul12a 8904 |
Comparison of product of two positive numbers. (Contributed by NM,
30-Dec-2005.)
|
| ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶 ∧ 𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷)) |
| |
| Theorem | lemul12b 8905 |
Comparison of product of two nonnegative numbers. (Contributed by NM,
22-Feb-2008.)
|
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
| |
| Theorem | lemul12a 8906 |
Comparison of product of two nonnegative numbers. (Contributed by NM,
22-Feb-2008.)
|
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
| |
| Theorem | mulgt1 8907 |
The product of two numbers greater than 1 is greater than 1. (Contributed
by NM, 13-Feb-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵)) |
| |
| Theorem | ltmulgt11 8908 |
Multiplication by a number greater than 1. (Contributed by NM,
24-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) |
| |
| Theorem | ltmulgt12 8909 |
Multiplication by a number greater than 1. (Contributed by NM,
24-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐵 · 𝐴))) |
| |
| Theorem | lemulge11 8910 |
Multiplication by a number greater than or equal to 1. (Contributed by
NM, 17-Dec-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵)) |
| |
| Theorem | lemulge12 8911 |
Multiplication by a number greater than or equal to 1. (Contributed by
Paul Chapman, 21-Mar-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐵 · 𝐴)) |
| |
| Theorem | ltdiv1 8912 |
Division of both sides of 'less than' by a positive number. (Contributed
by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) |
| |
| Theorem | lediv1 8913 |
Division of both sides of a less than or equal to relation by a positive
number. (Contributed by NM, 18-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))) |
| |
| Theorem | gt0div 8914 |
Division of a positive number by a positive number. (Contributed by NM,
28-Sep-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵))) |
| |
| Theorem | ge0div 8915 |
Division of a nonnegative number by a positive number. (Contributed by
NM, 28-Sep-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) |
| |
| Theorem | divgt0 8916 |
The ratio of two positive numbers is positive. (Contributed by NM,
12-Oct-1999.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) |
| |
| Theorem | divge0 8917 |
The ratio of nonnegative and positive numbers is nonnegative.
(Contributed by NM, 27-Sep-1999.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| |
| Theorem | ltmuldiv 8918 |
'Less than' relationship between division and multiplication.
(Contributed by NM, 12-Oct-1999.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) |
| |
| Theorem | ltmuldiv2 8919 |
'Less than' relationship between division and multiplication.
(Contributed by NM, 18-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐴) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) |
| |
| Theorem | ltdivmul 8920 |
'Less than' relationship between division and multiplication.
(Contributed by NM, 18-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐶 · 𝐵))) |
| |
| Theorem | ledivmul 8921 |
'Less than or equal to' relationship between division and multiplication.
(Contributed by NM, 9-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐶 · 𝐵))) |
| |
| Theorem | ltdivmul2 8922 |
'Less than' relationship between division and multiplication.
(Contributed by NM, 24-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 · 𝐶))) |
| |
| Theorem | lt2mul2div 8923 |
'Less than' relationship between division and multiplication.
(Contributed by NM, 8-Jan-2006.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) |
| |
| Theorem | ledivmul2 8924 |
'Less than or equal to' relationship between division and multiplication.
(Contributed by NM, 9-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 · 𝐶))) |
| |
| Theorem | lemuldiv 8925 |
'Less than or equal' relationship between division and multiplication.
(Contributed by NM, 10-Mar-2006.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) |
| |
| Theorem | lemuldiv2 8926 |
'Less than or equal' relationship between division and multiplication.
(Contributed by NM, 10-Mar-2006.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐴) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) |
| |
| Theorem | ltrec 8927 |
The reciprocal of both sides of 'less than'. (Contributed by NM,
26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) |
| |
| Theorem | lerec 8928 |
The reciprocal of both sides of 'less than or equal to'. (Contributed by
NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
| |
| Theorem | lt2msq1 8929 |
Lemma for lt2msq 8930. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 · 𝐴) < (𝐵 · 𝐵)) |
| |
| Theorem | lt2msq 8930 |
Two nonnegative numbers compare the same as their squares. (Contributed
by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) |
| |
| Theorem | ltdiv2 8931 |
Division of a positive number by both sides of 'less than'. (Contributed
by NM, 27-Apr-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴))) |
| |
| Theorem | ltrec1 8932 |
Reciprocal swap in a 'less than' relation. (Contributed by NM,
24-Feb-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐴) < 𝐵 ↔ (1 / 𝐵) < 𝐴)) |
| |
| Theorem | lerec2 8933 |
Reciprocal swap in a 'less than or equal to' relation. (Contributed by
NM, 24-Feb-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴))) |
| |
| Theorem | ledivdiv 8934 |
Invert ratios of positive numbers and swap their ordering. (Contributed
by NM, 9-Jan-2006.)
|
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))) |
| |
| Theorem | lediv2 8935 |
Division of a positive number by both sides of 'less than or equal to'.
(Contributed by NM, 10-Jan-2006.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) |
| |
| Theorem | ltdiv23 8936 |
Swap denominator with other side of 'less than'. (Contributed by NM,
3-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
| |
| Theorem | lediv23 8937 |
Swap denominator with other side of 'less than or equal to'. (Contributed
by NM, 30-May-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵)) |
| |
| Theorem | lediv12a 8938 |
Comparison of ratio of two nonnegative numbers. (Contributed by NM,
31-Dec-2005.)
|
| ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
| |
| Theorem | lediv2a 8939 |
Division of both sides of 'less than or equal to' into a nonnegative
number. (Contributed by Paul Chapman, 7-Sep-2007.)
|
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) |
| |
| Theorem | reclt1 8940 |
The reciprocal of a positive number less than 1 is greater than 1.
(Contributed by NM, 23-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) |
| |
| Theorem | recgt1 8941 |
The reciprocal of a positive number greater than 1 is less than 1.
(Contributed by NM, 28-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐴 ↔ (1 / 𝐴) < 1)) |
| |
| Theorem | recgt1i 8942 |
The reciprocal of a number greater than 1 is positive and less than 1.
(Contributed by NM, 23-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) |
| |
| Theorem | recp1lt1 8943 |
Construct a number less than 1 from any nonnegative number. (Contributed
by NM, 30-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) |
| |
| Theorem | recreclt 8944 |
Given a positive number 𝐴, construct a new positive number
less than
both 𝐴 and 1. (Contributed by NM,
28-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 /
𝐴))) < 𝐴)) |
| |
| Theorem | le2msq 8945 |
The square function on nonnegative reals is monotonic. (Contributed by
NM, 3-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) |
| |
| Theorem | msq11 8946 |
The square of a nonnegative number is a one-to-one function. (Contributed
by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | ledivp1 8947 |
Less-than-or-equal-to and division relation. (Lemma for computing upper
bounds of products. The "+ 1" prevents division by zero.)
(Contributed
by NM, 28-Sep-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴) |
| |
| Theorem | squeeze0 8948* |
If a nonnegative number is less than any positive number, it is zero.
(Contributed by NM, 11-Feb-2006.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
| |
| Theorem | ltp1i 8949 |
A number is less than itself plus 1. (Contributed by NM,
20-Aug-2001.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ 𝐴 < (𝐴 + 1) |
| |
| Theorem | recgt0i 8950 |
The reciprocal of a positive number is positive. Exercise 4 of
[Apostol] p. 21. (Contributed by NM,
15-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 < 𝐴 → 0 < (1 / 𝐴)) |
| |
| Theorem | recgt0ii 8951 |
The reciprocal of a positive number is positive. Exercise 4 of
[Apostol] p. 21. (Contributed by NM,
15-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (1 / 𝐴) |
| |
| Theorem | prodgt0i 8952 |
Infer that a multiplicand is positive from a nonnegative multiplier and
positive product. (Contributed by NM, 15-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐵) |
| |
| Theorem | prodge0i 8953 |
Infer that a multiplicand is nonnegative from a positive multiplier and
nonnegative product. (Contributed by NM, 2-Jul-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ 𝐵) |
| |
| Theorem | divgt0i 8954 |
The ratio of two positive numbers is positive. (Contributed by NM,
16-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 / 𝐵)) |
| |
| Theorem | divge0i 8955 |
The ratio of nonnegative and positive numbers is nonnegative.
(Contributed by NM, 12-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 / 𝐵)) |
| |
| Theorem | ltreci 8956 |
The reciprocal of both sides of 'less than'. (Contributed by NM,
15-Sep-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) |
| |
| Theorem | lereci 8957 |
The reciprocal of both sides of 'less than or equal to'. (Contributed
by NM, 16-Sep-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
| |
| Theorem | lt2msqi 8958 |
The square function on nonnegative reals is strictly monotonic.
(Contributed by NM, 3-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) |
| |
| Theorem | le2msqi 8959 |
The square function on nonnegative reals is monotonic. (Contributed by
NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) |
| |
| Theorem | msq11i 8960 |
The square of a nonnegative number is a one-to-one function.
(Contributed by NM, 29-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | divgt0i2i 8961 |
The ratio of two positive numbers is positive. (Contributed by NM,
16-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐵 ⇒ ⊢ (0 < 𝐴 → 0 < (𝐴 / 𝐵)) |
| |
| Theorem | ltrecii 8962 |
The reciprocal of both sides of 'less than'. (Contributed by NM,
15-Sep-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)) |
| |
| Theorem | divgt0ii 8963 |
The ratio of two positive numbers is positive. (Contributed by NM,
18-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 / 𝐵) |
| |
| Theorem | ltmul1i 8964 |
Multiplication of both sides of 'less than' by a positive number.
Theorem I.19 of [Apostol] p. 20.
(Contributed by NM, 16-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) |
| |
| Theorem | ltdiv1i 8965 |
Division of both sides of 'less than' by a positive number.
(Contributed by NM, 16-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) |
| |
| Theorem | ltmuldivi 8966 |
'Less than' relationship between division and multiplication.
(Contributed by NM, 12-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (0 < 𝐶 → ((𝐴 · 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) |
| |
| Theorem | ltmul2i 8967 |
Multiplication of both sides of 'less than' by a positive number.
Theorem I.19 of [Apostol] p. 20.
(Contributed by NM, 16-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) |
| |
| Theorem | lemul1i 8968 |
Multiplication of both sides of 'less than or equal to' by a positive
number. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| |
| Theorem | lemul2i 8969 |
Multiplication of both sides of 'less than or equal to' by a positive
number. (Contributed by NM, 1-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) |
| |
| Theorem | ltdiv23i 8970 |
Swap denominator with other side of 'less than'. (Contributed by NM,
26-Sep-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((0 < 𝐵 ∧ 0 < 𝐶) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
| |
| Theorem | ltdiv23ii 8971 |
Swap denominator with other side of 'less than'. (Contributed by NM,
26-Sep-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐵 & ⊢ 0 < 𝐶 ⇒ ⊢ ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵) |
| |
| Theorem | ltmul1ii 8972 |
Multiplication of both sides of 'less than' by a positive number.
Theorem I.19 of [Apostol] p. 20.
(Contributed by NM, 16-May-1999.)
(Proof shortened by Paul Chapman, 25-Jan-2008.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)) |
| |
| Theorem | ltdiv1ii 8973 |
Division of both sides of 'less than' by a positive number.
(Contributed by NM, 16-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)) |
| |
| Theorem | ltp1d 8974 |
A number is less than itself plus 1. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| |
| Theorem | lep1d 8975 |
A number is less than or equal to itself plus 1. (Contributed by Mario
Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 + 1)) |
| |
| Theorem | ltm1d 8976 |
A number minus 1 is less than itself. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
| |
| Theorem | lem1d 8977 |
A number minus 1 is less than or equal to itself. (Contributed by Mario
Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) |
| |
| Theorem | recgt0d 8978 |
The reciprocal of a positive number is positive. Exercise 4 of
[Apostol] p. 21. (Contributed by
Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 0 < (1 / 𝐴)) |
| |
| Theorem | divgt0d 8979 |
The ratio of two positive numbers is positive. (Contributed by Mario
Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) |
| |
| Theorem | mulgt1d 8980 |
The product of two numbers greater than 1 is greater than 1.
(Contributed by Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴)
& ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) |
| |
| Theorem | lemulge11d 8981 |
Multiplication by a number greater than or equal to 1. (Contributed
by Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 · 𝐵)) |
| |
| Theorem | lemulge12d 8982 |
Multiplication by a number greater than or equal to 1. (Contributed
by Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐵 · 𝐴)) |
| |
| Theorem | lemul1ad 8983 |
Multiplication of both sides of 'less than or equal to' by a
nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶)
& ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| |
| Theorem | lemul2ad 8984 |
Multiplication of both sides of 'less than or equal to' by a
nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶)
& ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) |
| |
| Theorem | ltmul12ad 8985 |
Comparison of product of two positive numbers. (Contributed by Mario
Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 0 ≤ 𝐶)
& ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) |
| |
| Theorem | lemul12ad 8986 |
Comparison of product of two nonnegative numbers. (Contributed by
Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 0 ≤ 𝐶)
& ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| |
| Theorem | lemul12bd 8987 |
Comparison of product of two nonnegative numbers. (Contributed by
Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 0 ≤ 𝐷)
& ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| |
| Theorem | mulle0r 8988 |
Multiplying a nonnegative number by a nonpositive number yields a
nonpositive number. (Contributed by Jim Kingdon, 28-Oct-2021.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 0 ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ≤ 0) |
| |
| 4.3.10 Suprema
|
| |
| Theorem | lbreu 8989* |
If a set of reals contains a lower bound, it contains a unique lower
bound. (Contributed by NM, 9-Oct-2005.)
|
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
| |
| Theorem | lbcl 8990* |
If a set of reals contains a lower bound, it contains a unique lower
bound that belongs to the set. (Contributed by NM, 9-Oct-2005.)
(Revised by Mario Carneiro, 24-Dec-2016.)
|
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆) |
| |
| Theorem | lble 8991* |
If a set of reals contains a lower bound, the lower bound is less than
or equal to all members of the set. (Contributed by NM, 9-Oct-2005.)
(Proof shortened by Mario Carneiro, 24-Dec-2016.)
|
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) |
| |
| Theorem | lbinf 8992* |
If a set of reals contains a lower bound, the lower bound is its
infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV,
4-Sep-2020.)
|
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) |
| |
| Theorem | lbinfcl 8993* |
If a set of reals contains a lower bound, it contains its infimum.
(Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
|
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
| |
| Theorem | lbinfle 8994* |
If a set of reals contains a lower bound, its infimum is less than or
equal to all members of the set. (Contributed by NM, 11-Oct-2005.)
(Revised by AV, 4-Sep-2020.)
|
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
| |
| Theorem | suprubex 8995* |
A member of a nonempty bounded set of reals is less than or equal to
the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| |
| Theorem | suprlubex 8996* |
The supremum of a nonempty bounded set of reals is the least upper
bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) |
| |
| Theorem | suprnubex 8997* |
An upper bound is not less than the supremum of a nonempty bounded set
of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
| |
| Theorem | suprleubex 8998* |
The supremum of a nonempty bounded set of reals is less than or equal
to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by
Mario Carneiro, 6-Sep-2014.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
| |
| Theorem | negiso 8999 |
Negation is an order anti-isomorphism of the real numbers, which is its
own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
|
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |
| |
| Theorem | dfinfre 9000* |
The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.)
(Revised by AV, 4-Sep-2020.)
|
| ⊢ (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = ∪ {𝑥
∈ ℝ ∣ (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))}) |