![]() |
Intuitionistic Logic Explorer Theorem List (p. 90 of 145) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | negiso 8901 | Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) | ||
Theorem | dfinfre 8902* | The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = ∪ {𝑥 ∈ ℝ ∣ (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))}) | ||
Theorem | sup3exmid 8903* | If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.) |
⊢ ((𝑢 ⊆ ℝ ∧ ∃𝑤 𝑤 ∈ 𝑢 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑢 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑢 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝑢 𝑦 < 𝑧))) ⇒ ⊢ DECID 𝜑 | ||
Theorem | crap0 8904 | The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 0 ∨ 𝐵 # 0) ↔ (𝐴 + (i · 𝐵)) # 0)) | ||
Theorem | creur 8905* | The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | creui 8906* | The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | cju 8907* | The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | ||
Syntax | cn 8908 | Extend class notation to include the class of positive integers. |
class ℕ | ||
Definition | df-inn 8909* | Definition of the set of positive integers. For naming consistency with the Metamath Proof Explorer usages should refer to dfnn2 8910 instead. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) (New usage is discouraged.) |
⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
Theorem | dfnn2 8910* | Definition of the set of positive integers. Another name for df-inn 8909. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
Theorem | peano5nni 8911* | Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴) | ||
Theorem | nnssre 8912 | The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
⊢ ℕ ⊆ ℝ | ||
Theorem | nnsscn 8913 | The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
⊢ ℕ ⊆ ℂ | ||
Theorem | nnex 8914 | The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ℕ ∈ V | ||
Theorem | nnre 8915 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | ||
Theorem | nncn 8916 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | ||
Theorem | nnrei 8917 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℝ | ||
Theorem | nncni 8918 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℂ | ||
Theorem | 1nn 8919 | Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
⊢ 1 ∈ ℕ | ||
Theorem | peano2nn 8920 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | ||
Theorem | nnred 8921 | A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | nncnd 8922 | A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | peano2nnd 8923 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) | ||
Theorem | nnind 8924* | Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 8928 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
Theorem | nnindALT 8925* |
Principle of Mathematical Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 8924 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
Theorem | nn1m1nn 8926 | Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | ||
Theorem | nn1suc 8927* | If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → 𝜒) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜃) | ||
Theorem | nnaddcl 8928 | Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | ||
Theorem | nnmulcl 8929 | Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | ||
Theorem | nnmulcli 8930 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℕ | ||
Theorem | nnge1 8931 | A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | ||
Theorem | nnle1eq1 8932 | A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) | ||
Theorem | nngt0 8933 | A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | ||
Theorem | nnnlt1 8934 | A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | ||
Theorem | 0nnn 8935 | Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.) |
⊢ ¬ 0 ∈ ℕ | ||
Theorem | nnne0 8936 | A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
Theorem | nnap0 8937 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.) |
⊢ (𝐴 ∈ ℕ → 𝐴 # 0) | ||
Theorem | nngt0i 8938 | A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 0 < 𝐴 | ||
Theorem | nnap0i 8939 | A positive integer is apart from zero (inference version). (Contributed by Jim Kingdon, 1-Jan-2023.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 # 0 | ||
Theorem | nnne0i 8940 | A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ≠ 0 | ||
Theorem | nn2ge 8941* | There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) | ||
Theorem | nn1gt1 8942 | A positive integer is either one or greater than one. This is for ℕ; 0elnn 4615 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) | ||
Theorem | nngt1ne1 8943 | A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) |
⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | ||
Theorem | nndivre 8944 | The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) | ||
Theorem | nnrecre 8945 | The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | ||
Theorem | nnrecgt0 8946 | The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.) |
⊢ (𝐴 ∈ ℕ → 0 < (1 / 𝐴)) | ||
Theorem | nnsub 8947 | Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) | ||
Theorem | nnsubi 8948 | Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ) | ||
Theorem | nndiv 8949* | Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ)) | ||
Theorem | nndivtr 8950 | Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ) | ||
Theorem | nnge1d 8951 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 ≤ 𝐴) | ||
Theorem | nngt0d 8952 | A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
Theorem | nnne0d 8953 | A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
Theorem | nnap0d 8954 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
Theorem | nnrecred 8955 | The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | ||
Theorem | nnaddcld 8956 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) | ||
Theorem | nnmulcld 8957 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) | ||
Theorem | nndivred 8958 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | ||
The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 7809 through df-9 8974), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 7809 and df-1 7810). Integers can also be exhibited as sums of powers of 10 (e.g., the number 103 can be expressed as ((;10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2. Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12. | ||
Syntax | c2 8959 | Extend class notation to include the number 2. |
class 2 | ||
Syntax | c3 8960 | Extend class notation to include the number 3. |
class 3 | ||
Syntax | c4 8961 | Extend class notation to include the number 4. |
class 4 | ||
Syntax | c5 8962 | Extend class notation to include the number 5. |
class 5 | ||
Syntax | c6 8963 | Extend class notation to include the number 6. |
class 6 | ||
Syntax | c7 8964 | Extend class notation to include the number 7. |
class 7 | ||
Syntax | c8 8965 | Extend class notation to include the number 8. |
class 8 | ||
Syntax | c9 8966 | Extend class notation to include the number 9. |
class 9 | ||
Definition | df-2 8967 | Define the number 2. (Contributed by NM, 27-May-1999.) |
⊢ 2 = (1 + 1) | ||
Definition | df-3 8968 | Define the number 3. (Contributed by NM, 27-May-1999.) |
⊢ 3 = (2 + 1) | ||
Definition | df-4 8969 | Define the number 4. (Contributed by NM, 27-May-1999.) |
⊢ 4 = (3 + 1) | ||
Definition | df-5 8970 | Define the number 5. (Contributed by NM, 27-May-1999.) |
⊢ 5 = (4 + 1) | ||
Definition | df-6 8971 | Define the number 6. (Contributed by NM, 27-May-1999.) |
⊢ 6 = (5 + 1) | ||
Definition | df-7 8972 | Define the number 7. (Contributed by NM, 27-May-1999.) |
⊢ 7 = (6 + 1) | ||
Definition | df-8 8973 | Define the number 8. (Contributed by NM, 27-May-1999.) |
⊢ 8 = (7 + 1) | ||
Definition | df-9 8974 | Define the number 9. (Contributed by NM, 27-May-1999.) |
⊢ 9 = (8 + 1) | ||
Theorem | 0ne1 8975 | 0 ≠ 1 (common case). See aso 1ap0 8537. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 0 ≠ 1 | ||
Theorem | 1ne0 8976 | 1 ≠ 0. See aso 1ap0 8537. (Contributed by Jim Kingdon, 9-Mar-2020.) |
⊢ 1 ≠ 0 | ||
Theorem | 1m1e0 8977 | (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ (1 − 1) = 0 | ||
Theorem | 2re 8978 | The number 2 is real. (Contributed by NM, 27-May-1999.) |
⊢ 2 ∈ ℝ | ||
Theorem | 2cn 8979 | The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
⊢ 2 ∈ ℂ | ||
Theorem | 2ex 8980 | 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 2 ∈ V | ||
Theorem | 2cnd 8981 | 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 2 ∈ ℂ) | ||
Theorem | 3re 8982 | The number 3 is real. (Contributed by NM, 27-May-1999.) |
⊢ 3 ∈ ℝ | ||
Theorem | 3cn 8983 | The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
⊢ 3 ∈ ℂ | ||
Theorem | 3ex 8984 | 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 3 ∈ V | ||
Theorem | 4re 8985 | The number 4 is real. (Contributed by NM, 27-May-1999.) |
⊢ 4 ∈ ℝ | ||
Theorem | 4cn 8986 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 4 ∈ ℂ | ||
Theorem | 5re 8987 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
⊢ 5 ∈ ℝ | ||
Theorem | 5cn 8988 | The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 5 ∈ ℂ | ||
Theorem | 6re 8989 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
⊢ 6 ∈ ℝ | ||
Theorem | 6cn 8990 | The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 6 ∈ ℂ | ||
Theorem | 7re 8991 | The number 7 is real. (Contributed by NM, 27-May-1999.) |
⊢ 7 ∈ ℝ | ||
Theorem | 7cn 8992 | The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 7 ∈ ℂ | ||
Theorem | 8re 8993 | The number 8 is real. (Contributed by NM, 27-May-1999.) |
⊢ 8 ∈ ℝ | ||
Theorem | 8cn 8994 | The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 8 ∈ ℂ | ||
Theorem | 9re 8995 | The number 9 is real. (Contributed by NM, 27-May-1999.) |
⊢ 9 ∈ ℝ | ||
Theorem | 9cn 8996 | The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 9 ∈ ℂ | ||
Theorem | 0le0 8997 | Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 0 ≤ 0 | ||
Theorem | 0le2 8998 | 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
⊢ 0 ≤ 2 | ||
Theorem | 2pos 8999 | The number 2 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 2 | ||
Theorem | 2ne0 9000 | The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
⊢ 2 ≠ 0 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |