Home | Intuitionistic Logic Explorer Theorem List (p. 90 of 140) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nnaddcld 8901 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) | ||
Theorem | nnmulcld 8902 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) | ||
Theorem | nndivred 8903 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | ||
The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 7756 through df-9 8919), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 7756 and df-1 7757). Integers can also be exhibited as sums of powers of 10 (e.g., the number 103 can be expressed as ((;10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2. Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12. | ||
Syntax | c2 8904 | Extend class notation to include the number 2. |
class 2 | ||
Syntax | c3 8905 | Extend class notation to include the number 3. |
class 3 | ||
Syntax | c4 8906 | Extend class notation to include the number 4. |
class 4 | ||
Syntax | c5 8907 | Extend class notation to include the number 5. |
class 5 | ||
Syntax | c6 8908 | Extend class notation to include the number 6. |
class 6 | ||
Syntax | c7 8909 | Extend class notation to include the number 7. |
class 7 | ||
Syntax | c8 8910 | Extend class notation to include the number 8. |
class 8 | ||
Syntax | c9 8911 | Extend class notation to include the number 9. |
class 9 | ||
Definition | df-2 8912 | Define the number 2. (Contributed by NM, 27-May-1999.) |
⊢ 2 = (1 + 1) | ||
Definition | df-3 8913 | Define the number 3. (Contributed by NM, 27-May-1999.) |
⊢ 3 = (2 + 1) | ||
Definition | df-4 8914 | Define the number 4. (Contributed by NM, 27-May-1999.) |
⊢ 4 = (3 + 1) | ||
Definition | df-5 8915 | Define the number 5. (Contributed by NM, 27-May-1999.) |
⊢ 5 = (4 + 1) | ||
Definition | df-6 8916 | Define the number 6. (Contributed by NM, 27-May-1999.) |
⊢ 6 = (5 + 1) | ||
Definition | df-7 8917 | Define the number 7. (Contributed by NM, 27-May-1999.) |
⊢ 7 = (6 + 1) | ||
Definition | df-8 8918 | Define the number 8. (Contributed by NM, 27-May-1999.) |
⊢ 8 = (7 + 1) | ||
Definition | df-9 8919 | Define the number 9. (Contributed by NM, 27-May-1999.) |
⊢ 9 = (8 + 1) | ||
Theorem | 0ne1 8920 | 0 ≠ 1 (common case). See aso 1ap0 8484. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 0 ≠ 1 | ||
Theorem | 1ne0 8921 | 1 ≠ 0. See aso 1ap0 8484. (Contributed by Jim Kingdon, 9-Mar-2020.) |
⊢ 1 ≠ 0 | ||
Theorem | 1m1e0 8922 | (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ (1 − 1) = 0 | ||
Theorem | 2re 8923 | The number 2 is real. (Contributed by NM, 27-May-1999.) |
⊢ 2 ∈ ℝ | ||
Theorem | 2cn 8924 | The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
⊢ 2 ∈ ℂ | ||
Theorem | 2ex 8925 | 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 2 ∈ V | ||
Theorem | 2cnd 8926 | 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 2 ∈ ℂ) | ||
Theorem | 3re 8927 | The number 3 is real. (Contributed by NM, 27-May-1999.) |
⊢ 3 ∈ ℝ | ||
Theorem | 3cn 8928 | The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
⊢ 3 ∈ ℂ | ||
Theorem | 3ex 8929 | 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 3 ∈ V | ||
Theorem | 4re 8930 | The number 4 is real. (Contributed by NM, 27-May-1999.) |
⊢ 4 ∈ ℝ | ||
Theorem | 4cn 8931 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 4 ∈ ℂ | ||
Theorem | 5re 8932 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
⊢ 5 ∈ ℝ | ||
Theorem | 5cn 8933 | The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 5 ∈ ℂ | ||
Theorem | 6re 8934 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
⊢ 6 ∈ ℝ | ||
Theorem | 6cn 8935 | The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 6 ∈ ℂ | ||
Theorem | 7re 8936 | The number 7 is real. (Contributed by NM, 27-May-1999.) |
⊢ 7 ∈ ℝ | ||
Theorem | 7cn 8937 | The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 7 ∈ ℂ | ||
Theorem | 8re 8938 | The number 8 is real. (Contributed by NM, 27-May-1999.) |
⊢ 8 ∈ ℝ | ||
Theorem | 8cn 8939 | The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 8 ∈ ℂ | ||
Theorem | 9re 8940 | The number 9 is real. (Contributed by NM, 27-May-1999.) |
⊢ 9 ∈ ℝ | ||
Theorem | 9cn 8941 | The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 9 ∈ ℂ | ||
Theorem | 0le0 8942 | Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 0 ≤ 0 | ||
Theorem | 0le2 8943 | 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
⊢ 0 ≤ 2 | ||
Theorem | 2pos 8944 | The number 2 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 2 | ||
Theorem | 2ne0 8945 | The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
⊢ 2 ≠ 0 | ||
Theorem | 2ap0 8946 | The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.) |
⊢ 2 # 0 | ||
Theorem | 3pos 8947 | The number 3 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 3 | ||
Theorem | 3ne0 8948 | The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ 3 ≠ 0 | ||
Theorem | 3ap0 8949 | The number 3 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.) |
⊢ 3 # 0 | ||
Theorem | 4pos 8950 | The number 4 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 4 | ||
Theorem | 4ne0 8951 | The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ 4 ≠ 0 | ||
Theorem | 4ap0 8952 | The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.) |
⊢ 4 # 0 | ||
Theorem | 5pos 8953 | The number 5 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 5 | ||
Theorem | 6pos 8954 | The number 6 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 6 | ||
Theorem | 7pos 8955 | The number 7 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 7 | ||
Theorem | 8pos 8956 | The number 8 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 8 | ||
Theorem | 9pos 8957 | The number 9 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 9 | ||
This includes adding two pairs of values 1..10 (where the right is less than the left) and where the left is less than the right for the values 1..10. | ||
Theorem | neg1cn 8958 | -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ -1 ∈ ℂ | ||
Theorem | neg1rr 8959 | -1 is a real number (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ -1 ∈ ℝ | ||
Theorem | neg1ne0 8960 | -1 is nonzero (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -1 ≠ 0 | ||
Theorem | neg1lt0 8961 | -1 is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -1 < 0 | ||
Theorem | neg1ap0 8962 | -1 is apart from zero. (Contributed by Jim Kingdon, 9-Jun-2020.) |
⊢ -1 # 0 | ||
Theorem | negneg1e1 8963 | --1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ --1 = 1 | ||
Theorem | 1pneg1e0 8964 | 1 + -1 is 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (1 + -1) = 0 | ||
Theorem | 0m0e0 8965 | 0 minus 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (0 − 0) = 0 | ||
Theorem | 1m0e1 8966 | 1 - 0 = 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (1 − 0) = 1 | ||
Theorem | 0p1e1 8967 | 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ (0 + 1) = 1 | ||
Theorem | fv0p1e1 8968 | Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) | ||
Theorem | 1p0e1 8969 | 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (1 + 0) = 1 | ||
Theorem | 1p1e2 8970 | 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
⊢ (1 + 1) = 2 | ||
Theorem | 2m1e1 8971 | 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 8998. (Contributed by David A. Wheeler, 4-Jan-2017.) |
⊢ (2 − 1) = 1 | ||
Theorem | 1e2m1 8972 | 1 = 2 - 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 1 = (2 − 1) | ||
Theorem | 3m1e2 8973 | 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.) |
⊢ (3 − 1) = 2 | ||
Theorem | 4m1e3 8974 | 4 - 1 = 3. (Contributed by AV, 8-Feb-2021.) (Proof shortened by AV, 6-Sep-2021.) |
⊢ (4 − 1) = 3 | ||
Theorem | 5m1e4 8975 | 5 - 1 = 4. (Contributed by AV, 6-Sep-2021.) |
⊢ (5 − 1) = 4 | ||
Theorem | 6m1e5 8976 | 6 - 1 = 5. (Contributed by AV, 6-Sep-2021.) |
⊢ (6 − 1) = 5 | ||
Theorem | 7m1e6 8977 | 7 - 1 = 6. (Contributed by AV, 6-Sep-2021.) |
⊢ (7 − 1) = 6 | ||
Theorem | 8m1e7 8978 | 8 - 1 = 7. (Contributed by AV, 6-Sep-2021.) |
⊢ (8 − 1) = 7 | ||
Theorem | 9m1e8 8979 | 9 - 1 = 8. (Contributed by AV, 6-Sep-2021.) |
⊢ (9 − 1) = 8 | ||
Theorem | 2p2e4 8980 | Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.) |
⊢ (2 + 2) = 4 | ||
Theorem | 2times 8981 | Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | ||
Theorem | times2 8982 | A number times 2. (Contributed by NM, 16-Oct-2007.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | ||
Theorem | 2timesi 8983 | Two times a number. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (2 · 𝐴) = (𝐴 + 𝐴) | ||
Theorem | times2i 8984 | A number times 2. (Contributed by NM, 11-May-2004.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 2) = (𝐴 + 𝐴) | ||
Theorem | 2div2e1 8985 | 2 divided by 2 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (2 / 2) = 1 | ||
Theorem | 2p1e3 8986 | 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (2 + 1) = 3 | ||
Theorem | 1p2e3 8987 | 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (1 + 2) = 3 | ||
Theorem | 3p1e4 8988 | 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (3 + 1) = 4 | ||
Theorem | 4p1e5 8989 | 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (4 + 1) = 5 | ||
Theorem | 5p1e6 8990 | 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (5 + 1) = 6 | ||
Theorem | 6p1e7 8991 | 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (6 + 1) = 7 | ||
Theorem | 7p1e8 8992 | 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (7 + 1) = 8 | ||
Theorem | 8p1e9 8993 | 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
⊢ (8 + 1) = 9 | ||
Theorem | 3p2e5 8994 | 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
⊢ (3 + 2) = 5 | ||
Theorem | 3p3e6 8995 | 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
⊢ (3 + 3) = 6 | ||
Theorem | 4p2e6 8996 | 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
⊢ (4 + 2) = 6 | ||
Theorem | 4p3e7 8997 | 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
⊢ (4 + 3) = 7 | ||
Theorem | 4p4e8 8998 | 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
⊢ (4 + 4) = 8 | ||
Theorem | 5p2e7 8999 | 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
⊢ (5 + 2) = 7 | ||
Theorem | 5p3e8 9000 | 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
⊢ (5 + 3) = 8 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |