Theorem List for Intuitionistic Logic Explorer - 8901-9000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | div0api 8901 |
Division into zero is zero. (Contributed by NM, 12-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 # 0
⇒ ⊢ (0 / 𝐴) = 0 |
| |
| Theorem | divclapzi 8902 |
Closure law for division. (Contributed by Jim Kingdon, 27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℂ) |
| |
| Theorem | divcanap1zi 8903 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| |
| Theorem | divcanap2zi 8904 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
| |
| Theorem | divrecapzi 8905 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| |
| Theorem | divcanap3zi 8906 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| |
| Theorem | divcanap4zi 8907 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| |
| Theorem | rec11api 8908 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((𝐴 # 0 ∧ 𝐵 # 0) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | divclapi 8909 |
Closure law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) ∈ ℂ |
| |
| Theorem | divcanap2i 8910 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐵 · (𝐴 / 𝐵)) = 𝐴 |
| |
| Theorem | divcanap1i 8911 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 / 𝐵) · 𝐵) = 𝐴 |
| |
| Theorem | divrecapi 8912 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) |
| |
| Theorem | divcanap3i 8913 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐵 · 𝐴) / 𝐵) = 𝐴 |
| |
| Theorem | divcanap4i 8914 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐵) = 𝐴 |
| |
| Theorem | divap0i 8915 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) # 0 |
| |
| Theorem | rec11apii 8916 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵) |
| |
| Theorem | divassapzi 8917 |
An associative law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐶 # 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) |
| |
| Theorem | divmulapzi 8918 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) |
| |
| Theorem | divdirapzi 8919 |
Distribution of division over addition. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐶 # 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) |
| |
| Theorem | divdiv23apzi 8920 |
Swap denominators in a division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐵 # 0 ∧ 𝐶 # 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) |
| |
| Theorem | divmulapi 8921 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴) |
| |
| Theorem | divdiv32api 8922 |
Swap denominators in a division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵) |
| |
| Theorem | divassapi 8923 |
An associative law for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) |
| |
| Theorem | divdirapi 8924 |
Distribution of division over addition. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)) |
| |
| Theorem | div23api 8925 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵) |
| |
| Theorem | div11api 8926 |
One-to-one relationship for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵) |
| |
| Theorem | divmuldivapi 8927 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| |
| Theorem | divmul13api 8928 |
Swap denominators of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |
| |
| Theorem | divadddivapi 8929 |
Addition of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)) |
| |
| Theorem | divdivdivapi 8930 |
Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0 & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) |
| |
| Theorem | rerecclapzi 8931 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 # 0 → (1 / 𝐴) ∈ ℝ) |
| |
| Theorem | rerecclapi 8932 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 # 0
⇒ ⊢ (1 / 𝐴) ∈ ℝ |
| |
| Theorem | redivclapzi 8933 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℝ) |
| |
| Theorem | redivclapi 8934 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) ∈ ℝ |
| |
| Theorem | div1d 8935 |
A number divided by 1 is itself. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 / 1) = 𝐴) |
| |
| Theorem | recclapd 8936 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| |
| Theorem | recap0d 8937 |
The reciprocal of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) # 0) |
| |
| Theorem | recidapd 8938 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) |
| |
| Theorem | recidap2d 8939 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) |
| |
| Theorem | recrecapd 8940 |
A number is equal to the reciprocal of its reciprocal. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / (1 / 𝐴)) = 𝐴) |
| |
| Theorem | dividapd 8941 |
A number divided by itself is one. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
| |
| Theorem | div0apd 8942 |
Division into zero is zero. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (0 / 𝐴) = 0) |
| |
| Theorem | apmul1 8943 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
| |
| Theorem | apmul2 8944 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 6-Jan-2023.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐶 · 𝐴) # (𝐶 · 𝐵))) |
| |
| Theorem | divclapd 8945 |
Closure law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
| |
| Theorem | divcanap1d 8946 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| |
| Theorem | divcanap2d 8947 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
| |
| Theorem | divrecapd 8948 |
Relationship between division and reciprocal. Theorem I.9 of
[Apostol] p. 18. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| |
| Theorem | divrecap2d 8949 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| |
| Theorem | divcanap3d 8950 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| |
| Theorem | divcanap4d 8951 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| |
| Theorem | diveqap0d 8952 |
If a ratio is zero, the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) |
| |
| Theorem | diveqap1d 8953 |
Equality in terms of unit ratio. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 1) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | diveqap1ad 8954 |
The quotient of two complex numbers is one iff they are equal.
Deduction form of diveqap1 8860. Generalization of diveqap1d 8953.
(Contributed by Jim Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | diveqap0ad 8955 |
A fraction of complex numbers is zero iff its numerator is. Deduction
form of diveqap0 8837. (Contributed by Jim Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) |
| |
| Theorem | divap1d 8956 |
If two complex numbers are apart, their quotient is apart from one.
(Contributed by Jim Kingdon, 20-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) # 1) |
| |
| Theorem | divap0bd 8957 |
A ratio is zero iff the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0)) |
| |
| Theorem | divnegapd 8958 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
| |
| Theorem | divneg2apd 8959 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) |
| |
| Theorem | div2negapd 8960 |
Quotient of two negatives. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) |
| |
| Theorem | divap0d 8961 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) # 0) |
| |
| Theorem | recdivapd 8962 |
The reciprocal of a ratio. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
| |
| Theorem | recdivap2d 8963 |
Division into a reciprocal. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) |
| |
| Theorem | divcanap6d 8964 |
Cancellation of inverted fractions. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) |
| |
| Theorem | ddcanapd 8965 |
Cancellation in a double division. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵) |
| |
| Theorem | rec11apd 8966 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | divmulapd 8967 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) |
| |
| Theorem | apdivmuld 8968 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 26-Dec-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴)) |
| |
| Theorem | div32apd 8969 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) |
| |
| Theorem | div13apd 8970 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) |
| |
| Theorem | divdiv32apd 8971 |
Swap denominators in a division. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) |
| |
| Theorem | divcanap5d 8972 |
Cancellation of common factor in a ratio. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) |
| |
| Theorem | divcanap5rd 8973 |
Cancellation of common factor in a ratio. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) |
| |
| Theorem | divcanap7d 8974 |
Cancel equal divisors in a division. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) |
| |
| Theorem | dmdcanapd 8975 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶)) |
| |
| Theorem | dmdcanap2d 8976 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶)) |
| |
| Theorem | divdivap1d 8977 |
Division into a fraction. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| |
| Theorem | divdivap2d 8978 |
Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) |
| |
| Theorem | divmulap2d 8979 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) |
| |
| Theorem | divmulap3d 8980 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) |
| |
| Theorem | divassapd 8981 |
An associative law for division. (Contributed by Jim Kingdon,
2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) |
| |
| Theorem | div12apd 8982 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) |
| |
| Theorem | div23apd 8983 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
| |
| Theorem | divdirapd 8984 |
Distribution of division over addition. (Contributed by Jim Kingdon,
2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) |
| |
| Theorem | divsubdirapd 8985 |
Distribution of division over subtraction. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
| |
| Theorem | div11apd 8986 |
One-to-one relationship for division. (Contributed by Jim Kingdon,
2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | divmuldivapd 8987 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
30-Jul-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐷 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| |
| Theorem | divmuleqapd 8988 |
Cross-multiply in an equality of ratios. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐷 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐶 · 𝐵))) |
| |
| Theorem | rerecclapd 8989 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| |
| Theorem | redivclapd 8990 |
Closure law for division of reals. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
| |
| Theorem | diveqap1bd 8991 |
If two complex numbers are equal, their quotient is one. One-way
deduction form of diveqap1 8860. Converse of diveqap1d 8953. (Contributed
by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = 1) |
| |
| Theorem | div2subap 8992 |
Swap the order of subtraction in a division. (Contributed by Scott
Fenton, 24-Jun-2013.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
| |
| Theorem | div2subapd 8993 |
Swap subtrahend and minuend inside the numerator and denominator of a
fraction. Deduction form of div2subap 8992. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
| |
| Theorem | subrecap 8994 |
Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵))) |
| |
| Theorem | subrecapi 8995 |
Subtraction of reciprocals. (Contributed by Scott Fenton,
9-Jan-2017.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵)) |
| |
| Theorem | subrecapd 8996 |
Subtraction of reciprocals. (Contributed by Scott Fenton,
9-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵))) |
| |
| Theorem | mvllmulapd 8997 |
Move LHS left multiplication to RHS. (Contributed by Jim Kingdon,
10-Jun-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → (𝐴 · 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 / 𝐴)) |
| |
| Theorem | rerecapb 8998* |
A real number has a multiplicative inverse if and only if it is apart
from zero. Theorem 11.2.4 of [HoTT], p.
(varies). (Contributed by Jim
Kingdon, 18-Jan-2025.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
| |
| 4.3.9 Ordering on reals (cont.)
|
| |
| Theorem | ltp1 8999 |
A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
|
| ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
| |
| Theorem | lep1 9000 |
A number is less than or equal to itself plus 1. (Contributed by NM,
5-Jan-2006.)
|
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1)) |