ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iord GIF version

Definition df-iord 4329
Description: Define the ordinal predicate, which is true for a class that is transitive and whose elements are transitive. Definition of ordinal in [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by Jim Kingdon, 10-Oct-2018.) Use its alias dford3 4330 instead for naming consistency with set.mm. (New usage is discouraged.)

Assertion
Ref Expression
df-iord (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-iord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 4325 . 2 wff Ord 𝐴
31wtr 4065 . . 3 wff Tr 𝐴
4 vx . . . . . 6 setvar 𝑥
54cv 1334 . . . . 5 class 𝑥
65wtr 4065 . . . 4 wff Tr 𝑥
76, 4, 1wral 2435 . . 3 wff 𝑥𝐴 Tr 𝑥
83, 7wa 103 . 2 wff (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥)
92, 8wb 104 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Colors of variables: wff set class
This definition is referenced by:  dford3  4330
  Copyright terms: Public domain W3C validator