ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dford3 GIF version

Theorem dford3 4247
Description: Alias for df-iord 4246. Use it instead of df-iord 4246 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.)
Assertion
Ref Expression
dford3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dford3
StepHypRef Expression
1 df-iord 4246 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wral 2388  Tr wtr 3984  Ord word 4242
This theorem depends on definitions:  df-iord 4246
This theorem is referenced by:  ordeq  4252  ordtr  4258  trssord  4260  ordelord  4261  ord0  4271  ordon  4360  ordsucim  4374  onintonm  4391  ordom  4478  bj-nnord  12835  bj-omord  12837
  Copyright terms: Public domain W3C validator