ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dford3 GIF version

Theorem dford3 4399
Description: Alias for df-iord 4398. Use it instead of df-iord 4398 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.)
Assertion
Ref Expression
dford3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dford3
StepHypRef Expression
1 df-iord 4398 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2472  Tr wtr 4128  Ord word 4394
This theorem depends on definitions:  df-iord 4398
This theorem is referenced by:  ordeq  4404  ordtr  4410  trssord  4412  ordelord  4413  ord0  4423  ordon  4519  ordsucim  4533  onintonm  4550  ordom  4640  exmidonfinlem  7255  pw1on  7288  bj-nnord  15520  bj-omord  15522
  Copyright terms: Public domain W3C validator