ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dford3 GIF version

Theorem dford3 4398
Description: Alias for df-iord 4397. Use it instead of df-iord 4397 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.)
Assertion
Ref Expression
dford3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dford3
StepHypRef Expression
1 df-iord 4397 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2472  Tr wtr 4127  Ord word 4393
This theorem depends on definitions:  df-iord 4397
This theorem is referenced by:  ordeq  4403  ordtr  4409  trssord  4411  ordelord  4412  ord0  4422  ordon  4518  ordsucim  4532  onintonm  4549  ordom  4639  exmidonfinlem  7253  pw1on  7286  bj-nnord  15450  bj-omord  15452
  Copyright terms: Public domain W3C validator