ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dford3 GIF version

Theorem dford3 4369
Description: Alias for df-iord 4368. Use it instead of df-iord 4368 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.)
Assertion
Ref Expression
dford3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dford3
StepHypRef Expression
1 df-iord 4368 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2455  Tr wtr 4103  Ord word 4364
This theorem depends on definitions:  df-iord 4368
This theorem is referenced by:  ordeq  4374  ordtr  4380  trssord  4382  ordelord  4383  ord0  4393  ordon  4487  ordsucim  4501  onintonm  4518  ordom  4608  exmidonfinlem  7194  pw1on  7227  bj-nnord  14795  bj-omord  14797
  Copyright terms: Public domain W3C validator