HomeHome Intuitionistic Logic Explorer
Theorem List (p. 44 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4301-4400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremordelss 4301 An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
 
Theoremtrssord 4302 A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
 
Theoremordelord 4303 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)
 
Theoremtron 4304 The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Tr On
 
Theoremordelon 4305 An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
 
Theoremonelon 4306 An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
 
Theoremordin 4307 The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
 
Theoremonin 4308 The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
 
Theoremonelss 4309 An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
 
Theoremordtr1 4310 Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
(Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremontr1 4311 Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.)
(𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremonintss 4312* If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
 
Theoremord0 4313 The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Ord ∅
 
Theorem0elon 4314 The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.)
∅ ∈ On
 
Theoreminton 4315 The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.)
On = ∅
 
Theoremnlim0 4316 The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
¬ Lim ∅
 
Theoremlimord 4317 A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.)
(Lim 𝐴 → Ord 𝐴)
 
Theoremlimuni 4318 A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
(Lim 𝐴𝐴 = 𝐴)
 
Theoremlimuni2 4319 The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
(Lim 𝐴 → Lim 𝐴)
 
Theorem0ellim 4320 A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
(Lim 𝐴 → ∅ ∈ 𝐴)
 
Theoremlimelon 4321 A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.)
((𝐴𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On)
 
Theoremonn0 4322 The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.)
On ≠ ∅
 
Theoremonm 4323 The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
𝑥 𝑥 ∈ On
 
Theoremsuceq 4324 Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
 
Theoremelsuci 4325 Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
(𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
 
Theoremelsucg 4326 Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
(𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
Theoremelsuc2g 4327 Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.)
(𝐵𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
Theoremelsuc 4328 Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
𝐴 ∈ V       (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
 
Theoremelsuc2 4329 Membership in a successor. (Contributed by NM, 15-Sep-2003.)
𝐴 ∈ V       (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
 
Theoremnfsuc 4330 Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
𝑥𝐴       𝑥 suc 𝐴
 
Theoremelelsuc 4331 Membership in a successor. (Contributed by NM, 20-Jun-1998.)
(𝐴𝐵𝐴 ∈ suc 𝐵)
 
Theoremsucel 4332* Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
(suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
 
Theoremsuc0 4333 The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
suc ∅ = {∅}
 
Theoremsucprc 4334 A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
𝐴 ∈ V → suc 𝐴 = 𝐴)
 
Theoremunisuc 4335 A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V       (Tr 𝐴 suc 𝐴 = 𝐴)
 
Theoremunisucg 4336 A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
(𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
 
Theoremsssucid 4337 A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
𝐴 ⊆ suc 𝐴
 
Theoremsucidg 4338 Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
(𝐴𝑉𝐴 ∈ suc 𝐴)
 
Theoremsucid 4339 A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴
 
Theoremnsuceq0g 4340 No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.)
(𝐴𝑉 → suc 𝐴 ≠ ∅)
 
Theoremeqelsuc 4341 A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
𝐴 ∈ V       (𝐴 = 𝐵𝐴 ∈ suc 𝐵)
 
Theoremiunsuc 4342* Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)        𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
 
Theoremsuctr 4343 The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.)
(Tr 𝐴 → Tr suc 𝐴)
 
Theoremtrsuc 4344 A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
 
Theoremtrsucss 4345 A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
(Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))
 
Theoremsucssel 4346 A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
(𝐴𝑉 → (suc 𝐴𝐵𝐴𝐵))
 
Theoremorduniss 4347 An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.)
(Ord 𝐴 𝐴𝐴)
 
Theoremonordi 4348 An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.)
𝐴 ∈ On       Ord 𝐴
 
Theoremontrci 4349 An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
𝐴 ∈ On       Tr 𝐴
 
Theoremoneli 4350 A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
𝐴 ∈ On       (𝐵𝐴𝐵 ∈ On)
 
Theoremonelssi 4351 A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.)
𝐴 ∈ On       (𝐵𝐴𝐵𝐴)
 
Theoremonelini 4352 An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
𝐴 ∈ On       (𝐵𝐴𝐵 = (𝐵𝐴))
 
Theoremoneluni 4353 An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
𝐴 ∈ On       (𝐵𝐴 → (𝐴𝐵) = 𝐴)
 
Theoremonunisuci 4354 An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
𝐴 ∈ On        suc 𝐴 = 𝐴
 
2.4  IZF Set Theory - add the Axiom of Union
 
2.4.1  Introduce the Axiom of Union
 
Axiomax-un 4355* Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the union of a given set 𝑥 i.e. the collection of all members of the members of 𝑥. The variant axun2 4357 states that the union itself exists. A version with the standard abbreviation for union is uniex2 4358. A version using class notation is uniex 4359.

This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4049), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 264).

The union of a class df-uni 3737 should not be confused with the union of two classes df-un 3075. Their relationship is shown in unipr 3750. (Contributed by NM, 23-Dec-1993.)

𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
 
Theoremzfun 4356* Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
 
Theoremaxun2 4357* A variant of the Axiom of Union ax-un 4355. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
 
Theoremuniex2 4358* The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.)
𝑦 𝑦 = 𝑥
 
Theoremuniex 4359 The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2692), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
𝐴 ∈ V        𝐴 ∈ V
 
Theoremvuniex 4360 The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
𝑥 ∈ V
 
Theoremuniexg 4361 The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.)
(𝐴𝑉 𝐴 ∈ V)
 
Theoremunex 4362 The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐵) ∈ V
 
Theoremunexb 4363 Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
 
Theoremunexg 4364 A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
Theoremtpexg 4365 An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.)
((𝐴𝑈𝐵𝑉𝐶𝑊) → {𝐴, 𝐵, 𝐶} ∈ V)
 
Theoremunisn3 4366* Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
(𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
 
Theoremabnexg 4367* Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 6016. Note that the second antecedent 𝑥𝐴𝑥𝐹 cannot be translated to 𝐴𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 4369 and pwnex 4370 respectively, proved from abnex 4368, which is a consequence of abnexg 4367 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.)
(∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊𝐴 ∈ V))
 
Theoremabnex 4368* Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4369 and pwnex 4370. See the comment of abnexg 4367. (Contributed by BJ, 2-May-2021.)
(∀𝑥(𝐹𝑉𝑥𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V)
 
Theoremsnnex 4369* The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.)
{𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
 
Theorempwnex 4370* The class of all power sets is a proper class. See also snnex 4369. (Contributed by BJ, 2-May-2021.)
{𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
 
Theoremopeluu 4371 Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))
 
Theoremuniuni 4372* Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.)
𝐴 = {𝑥 ∣ ∃𝑦(𝑥 = 𝑦𝑦𝐴)}
 
Theoremeusv1 4373* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.)
(∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
 
Theoremeusvnf 4374* Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
(∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
 
Theoremeusvnfb 4375* Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.)
(∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
 
Theoremeusv2i 4376* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
(∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
 
Theoremeusv2nf 4377* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V       (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
 
Theoremeusv2 4378* Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V       (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴)
 
Theoremreusv1 4379* Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
(∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
 
Theoremreusv3i 4380* Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑧𝐶 = 𝐷)       (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
 
Theoremreusv3 4381* Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 4379 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑧𝐶 = 𝐷)       (∃𝑦𝐵 (𝜑𝐶𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
 
Theoremalxfr 4382* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
 
Theoremralxfrd 4383* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
Theoremrexxfrd 4384* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
((𝜑𝑦𝐶) → 𝐴𝐵)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
 
Theoremralxfr2d 4385* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.)
((𝜑𝑦𝐶) → 𝐴𝑉)    &   (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
 
Theoremrexxfr2d 4386* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
((𝜑𝑦𝐶) → 𝐴𝑉)    &   (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
 
Theoremralxfr 4387* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
 
TheoremralxfrALT 4388* Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. This proof does not use ralxfrd 4383. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
 
Theoremrexxfr 4389* Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
(𝑦𝐶𝐴𝐵)    &   (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓)
 
Theoremrabxfrd 4390* Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜒. (Contributed by NM, 16-Jan-2012.)
𝑦𝐵    &   𝑦𝐶    &   ((𝜑𝑦𝐷) → 𝐴𝐷)    &   (𝑥 = 𝐴 → (𝜓𝜒))    &   (𝑦 = 𝐵𝐴 = 𝐶)       ((𝜑𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜓} ↔ 𝐵 ∈ {𝑦𝐷𝜒}))
 
Theoremrabxfr 4391* Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.)
𝑦𝐵    &   𝑦𝐶    &   (𝑦𝐷𝐴𝐷)    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵𝐴 = 𝐶)       (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
 
Theoremreuhypd 4392* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
((𝜑𝑥𝐶) → 𝐵𝐶)    &   ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))       ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
 
Theoremreuhyp 4393* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
(𝑥𝐶𝐵𝐶)    &   ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))       (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
 
Theoremuniexb 4394 The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
(𝐴 ∈ V ↔ 𝐴 ∈ V)
 
Theorempwexb 4395 The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
(𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
 
Theoremelpwpwel 4396 A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
(𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
 
Theoremuniv 4397 The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
V = V
 
Theoremeldifpw 4398 Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
𝐶 ∈ V       ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))
 
Theoremop1stb 4399 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
𝐴 ∈ V    &   𝐵 ∈ V        𝐴, 𝐵⟩ = 𝐴
 
Theoremop1stbg 4400 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >