HomeHome Intuitionistic Logic Explorer
Theorem List (p. 44 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4301-4400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsoeq2 4301 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
(𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
 
Theoremsonr 4302 A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theoremsotr 4303 A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 
Theoremissod 4304* An irreflexive, transitive, trichotomous relation is a linear ordering (in the sense of df-iso 4282). (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Po 𝐴)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))       (𝜑𝑅 Or 𝐴)
 
Theoremsowlin 4305 A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))
 
Theoremso2nr 4306 A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 
Theoremso3nr 4307 A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
 
Theoremsotricim 4308 One direction of sotritric 4309 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
 
Theoremsotritric 4309 A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.)
𝑅 Or 𝐴    &   ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))       ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
 
Theoremsotritrieq 4310 A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.)
𝑅 Or 𝐴    &   ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))       ((𝐵𝐴𝐶𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
 
Theoremso0 4311 Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑅 Or ∅
 
2.3.9  Founded and set-like relations
 
Syntaxwfrfor 4312 Extend wff notation to include the well-founded predicate.
wff FrFor 𝑅𝐴𝑆
 
Syntaxwfr 4313 Extend wff notation to include the well-founded predicate. Read: ' 𝑅 is a well-founded relation on 𝐴.'
wff 𝑅 Fr 𝐴
 
Syntaxwse 4314 Extend wff notation to include the set-like predicate. Read: ' 𝑅 is set-like on 𝐴.'
wff 𝑅 Se 𝐴
 
Syntaxwwe 4315 Extend wff notation to include the well-ordering predicate. Read: ' 𝑅 well-orders 𝐴.'
wff 𝑅 We 𝐴
 
Definitiondf-frfor 4316* Define the well-founded relation predicate where 𝐴 might be a proper class. By passing in 𝑆 we allow it potentially to be a proper class rather than a set. (Contributed by Jim Kingdon and Mario Carneiro, 22-Sep-2021.)
( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) → 𝐴𝑆))
 
Definitiondf-frind 4317* Define the well-founded relation predicate. In the presence of excluded middle, there are a variety of equivalent ways to define this. In our case, this definition, in terms of an inductive principle, works better than one along the lines of "there is an element which is minimal when A is ordered by R". Because 𝑠 is constrained to be a set (not a proper class) here, sometimes it may be necessary to use FrFor directly rather than via Fr. (Contributed by Jim Kingdon and Mario Carneiro, 21-Sep-2021.)
(𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
 
Definitiondf-se 4318* Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014.)
(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
 
Definitiondf-wetr 4319* Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4505). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.)
(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
 
Theoremseex 4320* The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
 
Theoremexse 4321 Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
(𝐴𝑉𝑅 Se 𝐴)
 
Theoremsess1 4322 Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
 
Theoremsess2 4323 Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
 
Theoremseeq1 4324 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
 
Theoremseeq2 4325 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
 
Theoremnfse 4326 Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Se 𝐴
 
Theoremepse 4327 The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
E Se 𝐴
 
Theoremfrforeq1 4328 Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
(𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑆𝐴𝑇))
 
Theoremfreq1 4329 Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
 
Theoremfrforeq2 4330 Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
(𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇))
 
Theoremfreq2 4331 Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
(𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
 
Theoremfrforeq3 4332 Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
(𝑆 = 𝑇 → ( FrFor 𝑅𝐴𝑆 ↔ FrFor 𝑅𝐴𝑇))
 
Theoremnffrfor 4333 Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴    &   𝑥𝑆       𝑥 FrFor 𝑅𝐴𝑆
 
Theoremnffr 4334 Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Fr 𝐴
 
Theoremfrirrg 4335 A well-founded relation is irreflexive. This is the case where 𝐴 exists. (Contributed by Jim Kingdon, 21-Sep-2021.)
((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theoremfr0 4336 Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
𝑅 Fr ∅
 
Theoremfrind 4337* Induction over a well-founded set. (Contributed by Jim Kingdon, 28-Sep-2021.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   ((𝜒𝑥𝐴) → (∀𝑦𝐴 (𝑦𝑅𝑥𝜓) → 𝜑))    &   (𝜒𝑅 Fr 𝐴)    &   (𝜒𝐴𝑉)       ((𝜒𝑥𝐴) → 𝜑)
 
Theoremefrirr 4338 Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
( E Fr 𝐴 → ¬ 𝐴𝐴)
 
Theoremtz7.2 4339 Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
 
Theoremnfwe 4340 Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 We 𝐴
 
Theoremweeq1 4341 Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
 
Theoremweeq2 4342 Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
(𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))
 
Theoremwefr 4343 A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.)
(𝑅 We 𝐴𝑅 Fr 𝐴)
 
Theoremwepo 4344 A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.)
((𝑅 We 𝐴𝐴𝑉) → 𝑅 Po 𝐴)
 
Theoremwetrep 4345* An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
(( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
 
Theoremwe0 4346 Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
𝑅 We ∅
 
2.3.10  Ordinals
 
Syntaxword 4347 Extend the definition of a wff to include the ordinal predicate.
wff Ord 𝐴
 
Syntaxcon0 4348 Extend the definition of a class to include the class of all ordinal numbers. (The 0 in the name prevents creating a file called con.html, which causes problems in Windows.)
class On
 
Syntaxwlim 4349 Extend the definition of a wff to include the limit ordinal predicate.
wff Lim 𝐴
 
Syntaxcsuc 4350 Extend class notation to include the successor function.
class suc 𝐴
 
Definitiondf-iord 4351* Define the ordinal predicate, which is true for a class that is transitive and whose elements are transitive. Definition of ordinal in [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by Jim Kingdon, 10-Oct-2018.) Use its alias dford3 4352 instead for naming consistency with set.mm. (New usage is discouraged.)

(Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
 
Theoremdford3 4352* Alias for df-iord 4351. Use it instead of df-iord 4351 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.)
(Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
 
Definitiondf-on 4353 Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.)
On = {𝑥 ∣ Ord 𝑥}
 
Definitiondf-ilim 4354 Define the limit ordinal predicate, which is true for an ordinal that has the empty set as an element and is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42, and then changes 𝐴 ≠ ∅ to ∅ ∈ 𝐴 (which would be equivalent given the law of the excluded middle, but which is not for us). (Contributed by Jim Kingdon, 11-Nov-2018.) Use its alias dflim2 4355 instead for naming consistency with set.mm. (New usage is discouraged.)
(Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
 
Theoremdflim2 4355 Alias for df-ilim 4354. Use it instead of df-ilim 4354 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
(Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
 
Definitiondf-suc 4356 Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4397). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
suc 𝐴 = (𝐴 ∪ {𝐴})
 
Theoremordeq 4357 Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
(𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
 
Theoremelong 4358 An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
(𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))
 
Theoremelon 4359 An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
𝐴 ∈ V       (𝐴 ∈ On ↔ Ord 𝐴)
 
Theoremeloni 4360 An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.)
(𝐴 ∈ On → Ord 𝐴)
 
Theoremelon2 4361 An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
(𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
 
Theoremlimeq 4362 Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
 
Theoremordtr 4363 An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
(Ord 𝐴 → Tr 𝐴)
 
Theoremordelss 4364 An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
 
Theoremtrssord 4365 A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
 
Theoremordelord 4366 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)
 
Theoremtron 4367 The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Tr On
 
Theoremordelon 4368 An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
 
Theoremonelon 4369 An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
 
Theoremordin 4370 The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
 
Theoremonin 4371 The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
 
Theoremonelss 4372 An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
 
Theoremordtr1 4373 Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
(Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremontr1 4374 Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.)
(𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremonintss 4375* If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
 
Theoremord0 4376 The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Ord ∅
 
Theorem0elon 4377 The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.)
∅ ∈ On
 
Theoreminton 4378 The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.)
On = ∅
 
Theoremnlim0 4379 The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
¬ Lim ∅
 
Theoremlimord 4380 A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.)
(Lim 𝐴 → Ord 𝐴)
 
Theoremlimuni 4381 A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
(Lim 𝐴𝐴 = 𝐴)
 
Theoremlimuni2 4382 The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
(Lim 𝐴 → Lim 𝐴)
 
Theorem0ellim 4383 A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
(Lim 𝐴 → ∅ ∈ 𝐴)
 
Theoremlimelon 4384 A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.)
((𝐴𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On)
 
Theoremonn0 4385 The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.)
On ≠ ∅
 
Theoremonm 4386 The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
𝑥 𝑥 ∈ On
 
Theoremsuceq 4387 Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
 
Theoremelsuci 4388 Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
(𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
 
Theoremelsucg 4389 Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
(𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
Theoremelsuc2g 4390 Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.)
(𝐵𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
Theoremelsuc 4391 Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
𝐴 ∈ V       (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
 
Theoremelsuc2 4392 Membership in a successor. (Contributed by NM, 15-Sep-2003.)
𝐴 ∈ V       (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
 
Theoremnfsuc 4393 Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
𝑥𝐴       𝑥 suc 𝐴
 
Theoremelelsuc 4394 Membership in a successor. (Contributed by NM, 20-Jun-1998.)
(𝐴𝐵𝐴 ∈ suc 𝐵)
 
Theoremsucel 4395* Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
(suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
 
Theoremsuc0 4396 The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
suc ∅ = {∅}
 
Theoremsucprc 4397 A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
𝐴 ∈ V → suc 𝐴 = 𝐴)
 
Theoremunisuc 4398 A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V       (Tr 𝐴 suc 𝐴 = 𝐴)
 
Theoremunisucg 4399 A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
(𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
 
Theoremsssucid 4400 A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
𝐴 ⊆ suc 𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >