| Intuitionistic Logic Explorer Theorem List (p. 44 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | opeqsn 4301 | Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) | ||
| Theorem | opeqpr 4302 | Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) | ||
| Theorem | euotd 4303* | Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝜓 ↔ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶))) ⇒ ⊢ (𝜑 → ∃!𝑥∃𝑎∃𝑏∃𝑐(𝑥 = 〈𝑎, 𝑏, 𝑐〉 ∧ 𝜓)) | ||
| Theorem | uniop 4304 | The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} | ||
| Theorem | uniopel 4305 | Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) | ||
| Theorem | opabid 4306 | The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | ||
| Theorem | opabidw 4307* | The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 4306 with a disjoint variable condition. (Contributed by NM, 14-Apr-1995.) (Revised by GG, 26-Jan-2024.) |
| ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | ||
| Theorem | elopab 4308* | Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | ||
| Theorem | opelopabsbALT 4309* | The law of concretion in terms of substitutions. Less general than opelopabsb 4310, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) | ||
| Theorem | opelopabsb 4310* | The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | ||
| Theorem | brabsb 4311* | The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | ||
| Theorem | opelopabt 4312* | Closed theorem form of opelopab 4322. (Contributed by NM, 19-Feb-2013.) |
| ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) | ||
| Theorem | opelopabga 4313* | The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | brabga 4314* | The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) | ||
| Theorem | opelopab2a 4315* | Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} ↔ 𝜓)) | ||
| Theorem | opelopaba 4316* | The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) | ||
| Theorem | braba 4317* | The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝜓) | ||
| Theorem | opelopabg 4318* | The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) | ||
| Theorem | brabg 4319* | The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) | ||
| Theorem | opelopabgf 4320* | The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4318 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) | ||
| Theorem | opelopab2 4321* | Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} ↔ 𝜒)) | ||
| Theorem | opelopab 4322* | The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 16-May-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) | ||
| Theorem | brab 4323* | The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝜒) | ||
| Theorem | opelopabaf 4324* | The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4322 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) | ||
| Theorem | opelopabf 4325* | The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4322 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) | ||
| Theorem | ssopab2 4326 | Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
| ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
| Theorem | ssopab2b 4327 | Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) | ||
| Theorem | ssopab2i 4328 | Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} | ||
| Theorem | ssopab2dv 4329* | Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | eqopab2b 4330 | Equivalence of ordered pair abstraction equality and biconditional. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 ↔ 𝜓)) | ||
| Theorem | opabm 4331* | Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.) |
| ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) | ||
| Theorem | iunopab 4332* | Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} | ||
| Theorem | pwin 4333 | The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
| ⊢ 𝒫 (𝐴 ∩ 𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵) | ||
| Theorem | pwunss 4334 | The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
| ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) | ||
| Theorem | pwssunim 4335 | The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) | ||
| Theorem | pwundifss 4336 | Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.) |
| ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴 ∪ 𝐵) | ||
| Theorem | pwunim 4337 | The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵)) | ||
| Syntax | cep 4338 | Extend class notation to include the epsilon relation. |
| class E | ||
| Syntax | cid 4339 | Extend the definition of a class to include identity relation. |
| class I | ||
| Definition | df-eprel 4340* | Define the epsilon relation. Similar to Definition 6.22 of [TakeutiZaring] p. 30. The epsilon relation and set membership are the same, that is, (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) when 𝐵 is a set by epelg 4341. Thus, 5 E { 1 , 5 }. (Contributed by NM, 13-Aug-1995.) |
| ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | ||
| Theorem | epelg 4341 | The epsilon relation and membership are the same. General version of epel 4343. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
| Theorem | epelc 4342 | The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
| Theorem | epel 4343 | The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.) |
| ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | ||
| Definition | df-id 4344* | Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5. (Contributed by NM, 13-Aug-1995.) |
| ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | ||
We have not yet defined relations (df-rel 4686), but here we introduce a few related notions we will use to develop ordinals. The class variable 𝑅 is no different from other class variables, but it reminds us that typically it represents what we will later call a "relation". | ||
| Syntax | wpo 4345 | Extend wff notation to include the strict partial ordering predicate. Read: ' 𝑅 is a partial order on 𝐴.' |
| wff 𝑅 Po 𝐴 | ||
| Syntax | wor 4346 | Extend wff notation to include the strict linear ordering predicate. Read: ' 𝑅 orders 𝐴.' |
| wff 𝑅 Or 𝐴 | ||
| Definition | df-po 4347* | Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po 𝐴 means 𝑅 is a partial order on 𝐴. (Contributed by NM, 16-Mar-1997.) |
| ⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | ||
| Definition | df-iso 4348* | Define the strict linear order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. The property 𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.) |
| ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | ||
| Theorem | poss 4349 | Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | ||
| Theorem | poeq1 4350 | Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) | ||
| Theorem | poeq2 4351 | Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) | ||
| Theorem | nfpo 4352 | Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑅 Po 𝐴 | ||
| Theorem | nfso 4353 | Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑅 Or 𝐴 | ||
| Theorem | pocl 4354 | Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.) |
| ⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) | ||
| Theorem | ispod 4355* | Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ⇒ ⊢ (𝜑 → 𝑅 Po 𝐴) | ||
| Theorem | swopolem 4356* | Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) | ||
| Theorem | swopo 4357* | A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → 𝑅 Po 𝐴) | ||
| Theorem | poirr 4358 | A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.) |
| ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | ||
| Theorem | potr 4359 | A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.) |
| ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) | ||
| Theorem | po2nr 4360 | A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.) |
| ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | ||
| Theorem | po3nr 4361 | A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.) |
| ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | ||
| Theorem | po0 4362 | Any relation is a partial ordering of the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ 𝑅 Po ∅ | ||
| Theorem | pofun 4363* | A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ 𝑋𝑅𝑌} & ⊢ (𝑥 = 𝑦 → 𝑋 = 𝑌) ⇒ ⊢ ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) → 𝑆 Po 𝐴) | ||
| Theorem | sopo 4364 | A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
| ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | ||
| Theorem | soss 4365 | Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | ||
| Theorem | soeq1 4366 | Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | ||
| Theorem | soeq2 4367 | Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | ||
| Theorem | sonr 4368 | A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | ||
| Theorem | sotr 4369 | A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) | ||
| Theorem | issod 4370* | An irreflexive, transitive, trichotomous relation is a linear ordering (in the sense of df-iso 4348). (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → 𝑅 Or 𝐴) | ||
| Theorem | sowlin 4371 | A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷 ∨ 𝐷𝑅𝐶))) | ||
| Theorem | so2nr 4372 | A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | ||
| Theorem | so3nr 4373 | A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | ||
| Theorem | sotricim 4374 | One direction of sotritric 4375 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | ||
| Theorem | sotritric 4375 | A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ 𝑅 Or 𝐴 & ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | ||
| Theorem | sotritrieq 4376 | A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| ⊢ 𝑅 Or 𝐴 & ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) | ||
| Theorem | so0 4377 | Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ 𝑅 Or ∅ | ||
| Syntax | wfrfor 4378 | Extend wff notation to include the well-founded predicate. |
| wff FrFor 𝑅𝐴𝑆 | ||
| Syntax | wfr 4379 | Extend wff notation to include the well-founded predicate. Read: ' 𝑅 is a well-founded relation on 𝐴.' |
| wff 𝑅 Fr 𝐴 | ||
| Syntax | wse 4380 | Extend wff notation to include the set-like predicate. Read: ' 𝑅 is set-like on 𝐴.' |
| wff 𝑅 Se 𝐴 | ||
| Syntax | wwe 4381 | Extend wff notation to include the well-ordering predicate. Read: ' 𝑅 well-orders 𝐴.' |
| wff 𝑅 We 𝐴 | ||
| Definition | df-frfor 4382* | Define the well-founded relation predicate where 𝐴 might be a proper class. By passing in 𝑆 we allow it potentially to be a proper class rather than a set. (Contributed by Jim Kingdon and Mario Carneiro, 22-Sep-2021.) |
| ⊢ ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) | ||
| Definition | df-frind 4383* | Define the well-founded relation predicate. In the presence of excluded middle, there are a variety of equivalent ways to define this. In our case, this definition, in terms of an inductive principle, works better than one along the lines of "there is an element which is minimal when A is ordered by R". Because 𝑠 is constrained to be a set (not a proper class) here, sometimes it may be necessary to use FrFor directly rather than via Fr. (Contributed by Jim Kingdon and Mario Carneiro, 21-Sep-2021.) |
| ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | ||
| Definition | df-se 4384* | Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014.) |
| ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | ||
| Definition | df-wetr 4385* | Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4573). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
| ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | ||
| Theorem | seex 4386* | The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.) |
| ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) | ||
| Theorem | exse 4387 | Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) | ||
| Theorem | sess1 4388 | Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) | ||
| Theorem | sess2 4389 | Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) | ||
| Theorem | seeq1 4390 | Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) | ||
| Theorem | seeq2 4391 | Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 Se 𝐴 ↔ 𝑅 Se 𝐵)) | ||
| Theorem | nfse 4392 | Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑅 Se 𝐴 | ||
| Theorem | epse 4393 | The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
| ⊢ E Se 𝐴 | ||
| Theorem | frforeq1 4394 | Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑆𝐴𝑇)) | ||
| Theorem | freq1 4395 | Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | ||
| Theorem | frforeq2 4396 | Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
| ⊢ (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇)) | ||
| Theorem | freq2 4397 | Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) | ||
| Theorem | frforeq3 4398 | Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
| ⊢ (𝑆 = 𝑇 → ( FrFor 𝑅𝐴𝑆 ↔ FrFor 𝑅𝐴𝑇)) | ||
| Theorem | nffrfor 4399 | Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑆 ⇒ ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑆 | ||
| Theorem | nffr 4400 | Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |