Detailed syntax breakdown of Definition df-minusg
Step | Hyp | Ref
| Expression |
1 | | cminusg 12709 |
. 2
class
invg |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 2730 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | 2 | cv 1347 |
. . . . 5
class 𝑔 |
6 | | cbs 12416 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 5198 |
. . . 4
class
(Base‘𝑔) |
8 | | vw |
. . . . . . . 8
setvar 𝑤 |
9 | 8 | cv 1347 |
. . . . . . 7
class 𝑤 |
10 | 4 | cv 1347 |
. . . . . . 7
class 𝑥 |
11 | | cplusg 12480 |
. . . . . . . 8
class
+g |
12 | 5, 11 | cfv 5198 |
. . . . . . 7
class
(+g‘𝑔) |
13 | 9, 10, 12 | co 5853 |
. . . . . 6
class (𝑤(+g‘𝑔)𝑥) |
14 | | c0g 12596 |
. . . . . . 7
class
0g |
15 | 5, 14 | cfv 5198 |
. . . . . 6
class
(0g‘𝑔) |
16 | 13, 15 | wceq 1348 |
. . . . 5
wff (𝑤(+g‘𝑔)𝑥) = (0g‘𝑔) |
17 | 16, 8, 7 | crio 5808 |
. . . 4
class
(℩𝑤
∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)) |
18 | 4, 7, 17 | cmpt 4050 |
. . 3
class (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔))) |
19 | 2, 3, 18 | cmpt 4050 |
. 2
class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) |
20 | 1, 19 | wceq 1348 |
1
wff
invg = (𝑔
∈ V ↦ (𝑥 ∈
(Base‘𝑔) ↦
(℩𝑤 ∈
(Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) |