ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfvalg GIF version

Theorem grpinvfvalg 13174
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfvalg (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, 0   𝑥, +
Allowed substitution hints:   + (𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑦)

Proof of Theorem grpinvfvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2 𝑁 = (invg𝐺)
2 df-minusg 13136 . . 3 invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))))
3 fveq2 5558 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 grpinvval.b . . . . 5 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2247 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
6 fveq2 5558 . . . . . . . 8 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
7 grpinvval.p . . . . . . . 8 + = (+g𝐺)
86, 7eqtr4di 2247 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = + )
98oveqd 5939 . . . . . 6 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
10 fveq2 5558 . . . . . . 7 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
11 grpinvval.o . . . . . . 7 0 = (0g𝐺)
1210, 11eqtr4di 2247 . . . . . 6 (𝑔 = 𝐺 → (0g𝑔) = 0 )
139, 12eqeq12d 2211 . . . . 5 (𝑔 = 𝐺 → ((𝑦(+g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 + 𝑥) = 0 ))
145, 13riotaeqbidv 5880 . . . 4 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔)) = (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
155, 14mpteq12dv 4115 . . 3 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
16 elex 2774 . . 3 (𝐺𝑉𝐺 ∈ V)
17 basfn 12736 . . . . . 6 Base Fn V
18 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1918funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2017, 16, 19sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
214, 20eqeltrid 2283 . . . 4 (𝐺𝑉𝐵 ∈ V)
2221mptexd 5789 . . 3 (𝐺𝑉 → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) ∈ V)
232, 15, 16, 22fvmptd3 5655 . 2 (𝐺𝑉 → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
241, 23eqtrid 2241 1 (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cmpt 4094   Fn wfn 5253  cfv 5258  crio 5876  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  invgcminusg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-minusg 13136
This theorem is referenced by:  grpinvval  13175  grpinvfng  13176  grpsubval  13178  grpinvf  13179  grpinvpropdg  13207  opprnegg  13639
  Copyright terms: Public domain W3C validator