![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvfvalg | GIF version |
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvval.p | ⊢ + = (+g‘𝐺) |
grpinvval.o | ⊢ 0 = (0g‘𝐺) |
grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfvalg | ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvval.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
2 | df-minusg 13076 | . . 3 ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)))) | |
3 | fveq2 5554 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | grpinvval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2244 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | fveq2 5554 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
7 | grpinvval.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | eqtr4di 2244 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | 8 | oveqd 5935 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
10 | fveq2 5554 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
11 | grpinvval.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
12 | 10, 11 | eqtr4di 2244 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
13 | 9, 12 | eqeq12d 2208 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑦(+g‘𝑔)𝑥) = (0g‘𝑔) ↔ (𝑦 + 𝑥) = 0 )) |
14 | 5, 13 | riotaeqbidv 5876 | . . . 4 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
15 | 5, 14 | mpteq12dv 4111 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
16 | elex 2771 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
17 | basfn 12676 | . . . . . 6 ⊢ Base Fn V | |
18 | funfvex 5571 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
19 | 18 | funfni 5354 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
20 | 17, 16, 19 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
21 | 4, 20 | eqeltrid 2280 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
22 | 21 | mptexd 5785 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) ∈ V) |
23 | 2, 15, 16, 22 | fvmptd3 5651 | . 2 ⊢ (𝐺 ∈ 𝑉 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
24 | 1, 23 | eqtrid 2238 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4090 Fn wfn 5249 ‘cfv 5254 ℩crio 5872 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 invgcminusg 13073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-ndx 12621 df-slot 12622 df-base 12624 df-minusg 13076 |
This theorem is referenced by: grpinvval 13115 grpinvfng 13116 grpsubval 13118 grpinvf 13119 grpinvpropdg 13147 opprnegg 13579 |
Copyright terms: Public domain | W3C validator |