ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfvalg GIF version

Theorem grpinvfvalg 13541
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfvalg (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, 0   𝑥, +
Allowed substitution hints:   + (𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑦)

Proof of Theorem grpinvfvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2 𝑁 = (invg𝐺)
2 df-minusg 13503 . . 3 invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))))
3 fveq2 5603 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 grpinvval.b . . . . 5 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2260 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
6 fveq2 5603 . . . . . . . 8 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
7 grpinvval.p . . . . . . . 8 + = (+g𝐺)
86, 7eqtr4di 2260 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = + )
98oveqd 5991 . . . . . 6 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
10 fveq2 5603 . . . . . . 7 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
11 grpinvval.o . . . . . . 7 0 = (0g𝐺)
1210, 11eqtr4di 2260 . . . . . 6 (𝑔 = 𝐺 → (0g𝑔) = 0 )
139, 12eqeq12d 2224 . . . . 5 (𝑔 = 𝐺 → ((𝑦(+g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 + 𝑥) = 0 ))
145, 13riotaeqbidv 5930 . . . 4 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔)) = (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
155, 14mpteq12dv 4145 . . 3 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
16 elex 2791 . . 3 (𝐺𝑉𝐺 ∈ V)
17 basfn 13057 . . . . . 6 Base Fn V
18 funfvex 5620 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1918funfni 5399 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2017, 16, 19sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
214, 20eqeltrid 2296 . . . 4 (𝐺𝑉𝐵 ∈ V)
2221mptexd 5839 . . 3 (𝐺𝑉 → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) ∈ V)
232, 15, 16, 22fvmptd3 5701 . 2 (𝐺𝑉 → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
241, 23eqtrid 2254 1 (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  Vcvv 2779  cmpt 4124   Fn wfn 5289  cfv 5294  crio 5926  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  invgcminusg 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-minusg 13503
This theorem is referenced by:  grpinvval  13542  grpinvfng  13543  grpsubval  13545  grpinvf  13546  grpinvpropdg  13574  opprnegg  14012
  Copyright terms: Public domain W3C validator