![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvfvalg | GIF version |
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvval.p | ⊢ + = (+g‘𝐺) |
grpinvval.o | ⊢ 0 = (0g‘𝐺) |
grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfvalg | ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvval.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
2 | df-minusg 12902 | . . 3 ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)))) | |
3 | fveq2 5527 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | grpinvval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2238 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | fveq2 5527 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
7 | grpinvval.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | eqtr4di 2238 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | 8 | oveqd 5905 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
10 | fveq2 5527 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
11 | grpinvval.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
12 | 10, 11 | eqtr4di 2238 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
13 | 9, 12 | eqeq12d 2202 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑦(+g‘𝑔)𝑥) = (0g‘𝑔) ↔ (𝑦 + 𝑥) = 0 )) |
14 | 5, 13 | riotaeqbidv 5847 | . . . 4 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
15 | 5, 14 | mpteq12dv 4097 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
16 | elex 2760 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
17 | basfn 12533 | . . . . . 6 ⊢ Base Fn V | |
18 | funfvex 5544 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
19 | 18 | funfni 5328 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
20 | 17, 16, 19 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
21 | 4, 20 | eqeltrid 2274 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
22 | 21 | mptexd 5756 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) ∈ V) |
23 | 2, 15, 16, 22 | fvmptd3 5622 | . 2 ⊢ (𝐺 ∈ 𝑉 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
24 | 1, 23 | eqtrid 2232 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ↦ cmpt 4076 Fn wfn 5223 ‘cfv 5228 ℩crio 5843 (class class class)co 5888 Basecbs 12475 +gcplusg 12550 0gc0g 12722 invgcminusg 12899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-inn 8933 df-ndx 12478 df-slot 12479 df-base 12481 df-minusg 12902 |
This theorem is referenced by: grpinvval 12939 grpinvfng 12940 grpsubval 12942 grpinvf 12943 grpinvpropdg 12971 opprnegg 13326 |
Copyright terms: Public domain | W3C validator |