| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvfvalg | GIF version | ||
| Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvval.p | ⊢ + = (+g‘𝐺) |
| grpinvval.o | ⊢ 0 = (0g‘𝐺) |
| grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfvalg | ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
| 2 | df-minusg 13136 | . . 3 ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)))) | |
| 3 | fveq2 5558 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 4 | grpinvval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4 | eqtr4di 2247 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 6 | fveq2 5558 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 7 | grpinvval.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | eqtr4di 2247 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 9 | 8 | oveqd 5939 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
| 10 | fveq2 5558 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
| 11 | grpinvval.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 12 | 10, 11 | eqtr4di 2247 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
| 13 | 9, 12 | eqeq12d 2211 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑦(+g‘𝑔)𝑥) = (0g‘𝑔) ↔ (𝑦 + 𝑥) = 0 )) |
| 14 | 5, 13 | riotaeqbidv 5880 | . . . 4 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| 15 | 5, 14 | mpteq12dv 4115 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 16 | elex 2774 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 17 | basfn 12736 | . . . . . 6 ⊢ Base Fn V | |
| 18 | funfvex 5575 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 19 | 18 | funfni 5358 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 20 | 17, 16, 19 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 21 | 4, 20 | eqeltrid 2283 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
| 22 | 21 | mptexd 5789 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) ∈ V) |
| 23 | 2, 15, 16, 22 | fvmptd3 5655 | . 2 ⊢ (𝐺 ∈ 𝑉 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 24 | 1, 23 | eqtrid 2241 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 Fn wfn 5253 ‘cfv 5258 ℩crio 5876 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 invgcminusg 13133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-minusg 13136 |
| This theorem is referenced by: grpinvval 13175 grpinvfng 13176 grpsubval 13178 grpinvf 13179 grpinvpropdg 13207 opprnegg 13639 |
| Copyright terms: Public domain | W3C validator |