HomeHome Intuitionistic Logic Explorer
Theorem List (p. 129 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12801-12900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlimcmpted 12801* Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)       (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
 
Theoremlimcimolemlt 12802* Lemma for limcimo 12803. (Contributed by Jim Kingdon, 3-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑋 ∈ (𝐹 lim 𝐵))    &   (𝜑𝑌 ∈ (𝐹 lim 𝐵))    &   (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))       (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
 
Theoremlimcimo 12803* Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
 
Theoremlimcresi 12804 Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
 
Theoremcnplimcim 12805 If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
Theoremcnplimclemle 12806 Lemma for cnplimccntop 12808. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑍𝐴)    &   ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))    &   (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)       (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
 
Theoremcnplimclemr 12807 Lemma for cnplimccntop 12808. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))       (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 
Theoremcnplimccntop 12808 A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
Theoremcnlimcim 12809* If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
Theoremcnlimc 12810* 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
Theoremcnlimci 12811 If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑𝐹 ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)       (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
 
Theoremcnmptlimc 12812* If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)    &   (𝑥 = 𝐵𝑋 = 𝑌)       (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
 
Theoremlimccnpcntop 12813 If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
(𝜑𝐹:𝐴𝐷)    &   (𝜑𝐷 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐷)    &   (𝜑𝐶 ∈ (𝐹 lim 𝐵))    &   (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))       (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
 
Theoremlimccnp2lem 12814* Lemma for limccnp2cntop 12815. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))    &   𝑥𝜑    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐿 ∈ ℝ+)    &   (𝜑 → ∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))    &   (𝜑𝐹 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹) → (abs‘(𝑅𝐶)) < 𝐿))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺) → (abs‘(𝑆𝐷)) < 𝐿))       (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
 
Theoremlimccnp2cntop 12815* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))       (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
 
Theoremlimccoap 12816* Composition of two limits. This theorem is only usable in the case where 𝑥 # 𝑋 implies R(x) # 𝐶 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ {𝑤𝐵𝑤 # 𝐶})    &   ((𝜑𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}) → 𝑆 ∈ ℂ)    &   (𝜑𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋))    &   (𝜑𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑𝐷 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑇) lim 𝑋))
 
Theoremreldvg 12817 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
 
Theoremdvlemap 12818* Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
(𝜑𝐹:𝐷⟶ℂ)    &   (𝜑𝐷 ⊆ ℂ)    &   (𝜑𝐵𝐷)       ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
 
Theoremdvfvalap 12819* Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
𝑇 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))       ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
 
Theoremeldvap 12820* The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
𝑇 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐺 = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵))))
 
Theoremdvcl 12821 The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       ((𝜑𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ)
 
Theoremdvbssntrcntop 12822 The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴))
 
Theoremdvbss 12823 The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
 
Theoremdvbsssg 12824 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom (𝑆 D 𝐹) ⊆ 𝑆)
 
Theoremrecnprss 12825 Both and are subsets of . (Contributed by Mario Carneiro, 10-Feb-2015.)
(𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
 
Theoremdvfgg 12826 Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and . (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
 
Theoremdvfpm 12827 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
 
Theoremdvfcnpm 12828 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
 
Theoremdvidlemap 12829* Lemma for dvid 12831 and dvconst 12830. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝜑𝐹:ℂ⟶ℂ)    &   ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
 
Theoremdvconst 12830 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
 
Theoremdvid 12831 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(ℂ D ( I ↾ ℂ)) = (ℂ × {1})
 
Theoremdvcnp2cntop 12832 A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
𝐽 = (𝐾t 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 
Theoremdvcn 12833 A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
(((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴cn→ℂ))
 
Theoremdvaddxxbr 12834 The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
 
Theoremdvmulxxbr 12835 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 12837. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
 
Theoremdvaddxx 12836 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 12834. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))
 
Theoremdvmulxx 12837 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 12835. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
 
Theoremdviaddf 12838 The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝑆)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑 → dom (𝑆 D 𝐹) = 𝑋)    &   (𝜑 → dom (𝑆 D 𝐺) = 𝑋)       (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
 
Theoremdvimulf 12839 The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝑆)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑 → dom (𝑆 D 𝐹) = 𝑋)    &   (𝜑 → dom (𝑆 D 𝐺) = 𝑋)       (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))
 
Theoremdvcoapbr 12840* The chain rule for derivatives at a point. The 𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶) hypothesis constrains what functions work for 𝐺. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑌𝑋)    &   (𝜑𝑌𝑇)    &   (𝜑 → ∀𝑢𝑌 (𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑇 ⊆ ℂ)    &   (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑇 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
 
Theoremdvcjbr 12841 The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 12842. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋 ⊆ ℝ)    &   (𝜑𝐶 ∈ dom (ℝ D 𝐹))       (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
 
Theoremdvcj 12842 The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 12841. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
 
Theoremdvfre 12843 The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
 
Theoremdvexp 12844* Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
 
Theoremdvexp2 12845* Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
 
Theoremdvrecap 12846* Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
(𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
 
Theoremdvmptidcn 12847 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1)
 
Theoremdvmptccn 12848* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
 
Theoremdvmptclx 12849* Closure lemma for dvmptmulx 12851 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)       ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
 
Theoremdvmptaddx 12850* Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
 
Theoremdvmptmulx 12851* Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
 
Theoremdvmptcmulcn 12852* Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵)))
 
Theoremdvmptnegcn 12853* Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵))
 
Theoremdvmptsubcn 12854* Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐷𝑊)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵𝐷)))
 
Theoremdveflem 12855 Derivative of the exponential function at 0. The key step in the proof is eftlub 11396, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
0(ℂ D exp)1
 
Theoremdvef 12856 Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
(ℂ D exp) = exp
 
PART 9  BASIC REAL AND COMPLEX FUNCTIONS
 
9.1  Basic trigonometry
 
9.1.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 12857 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
exp ∈ (ℂ–cn→ℂ)
 
Theoremsincn 12858 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
sin ∈ (ℂ–cn→ℂ)
 
Theoremcoscn 12859 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
cos ∈ (ℂ–cn→ℂ)
 
9.1.2  Properties of pi = 3.14159...
 
Theorempilem1 12860 Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
 
Theoremcosz12 12861 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
 
Theoremsin0pilem1 12862* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
 
Theoremsin0pilem2 12863* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
 
Theorempilem3 12864 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
(π ∈ (2(,)4) ∧ (sin‘π) = 0)
 
Theorempigt2lt4 12865 π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(2 < π ∧ π < 4)
 
Theoremsinpi 12866 The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘π) = 0
 
Theorempire 12867 π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
π ∈ ℝ
 
Theorempicn 12868 π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
π ∈ ℂ
 
Theorempipos 12869 π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
0 < π
 
Theorempirp 12870 π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
π ∈ ℝ+
 
Theoremnegpicn 12871 is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.)
-π ∈ ℂ
 
Theoremsinhalfpilem 12872 Lemma for sinhalfpi 12877 and coshalfpi 12878. (Contributed by Paul Chapman, 23-Jan-2008.)
((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
 
Theoremhalfpire 12873 π / 2 is real. (Contributed by David Moews, 28-Feb-2017.)
(π / 2) ∈ ℝ
 
Theoremneghalfpire 12874 -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ
 
Theoremneghalfpirx 12875 -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ*
 
Theorempidiv2halves 12876 Adding π / 2 to itself gives π. See 2halves 8949. (Contributed by David A. Wheeler, 8-Dec-2018.)
((π / 2) + (π / 2)) = π
 
Theoremsinhalfpi 12877 The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(π / 2)) = 1
 
Theoremcoshalfpi 12878 The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(π / 2)) = 0
 
Theoremcosneghalfpi 12879 The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.)
(cos‘-(π / 2)) = 0
 
Theoremefhalfpi 12880 The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (π / 2))) = i
 
Theoremcospi 12881 The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘π) = -1
 
Theoremefipi 12882 The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(exp‘(i · π)) = -1
 
Theoremeulerid 12883 Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
((exp‘(i · π)) + 1) = 0
 
Theoremsin2pi 12884 The sine of is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(2 · π)) = 0
 
Theoremcos2pi 12885 The cosine of is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(2 · π)) = 1
 
Theoremef2pi 12886 The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (2 · π))) = 1
 
Theoremef2kpi 12887 If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1)
 
Theoremefper 12888 The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴))
 
Theoremsinperlem 12889 Lemma for sinper 12890 and cosper 12891. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))    &   ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))       ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
 
Theoremsinper 12890 The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴))
 
Theoremcosper 12891 The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴))
 
Theoremsin2kpi 12892 If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0)
 
Theoremcos2kpi 12893 If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1)
 
Theoremsin2pim 12894 Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴))
 
Theoremcos2pim 12895 Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴))
 
Theoremsinmpi 12896 Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
 
Theoremcosmpi 12897 Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴))
 
Theoremsinppi 12898 Sine of a number plus π. (Contributed by NM, 10-Aug-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴))
 
Theoremcosppi 12899 Cosine of a number plus π. (Contributed by NM, 18-Aug-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴))
 
Theoremefimpi 12900 The exponential function at i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >