Theorem List for Intuitionistic Logic Explorer - 12801-12900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Definition | df-tset 12801 |
Define the topology component of a topological space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ TopSet = Slot 9 |
| |
| Definition | df-ple 12802 |
Define "less than or equal to" ordering extractor for posets and
related
structures. We use ;10 for the index to avoid conflict with 1
through 9 used for other purposes. (Contributed
by NM, 4-Sep-2011.)
(Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ le = Slot ;10 |
| |
| Definition | df-ocomp 12803 |
Define the orthocomplementation extractor for posets and related
structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ oc = Slot ;11 |
| |
| Definition | df-ds 12804 |
Define the distance function component of a metric space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ dist = Slot ;12 |
| |
| Definition | df-unif 12805 |
Define the uniform structure component of a uniform space. (Contributed
by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ UnifSet = Slot ;13 |
| |
| Definition | df-hom 12806 |
Define the hom-set component of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
| ⊢ Hom = Slot ;14 |
| |
| Definition | df-cco 12807 |
Define the composition operation of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
| ⊢ comp = Slot ;15 |
| |
| Theorem | strleund 12808 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |
| |
| Theorem | strleun 12809 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
| ⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 |
| |
| Theorem | strext 12810 |
Extending the upper range of a structure. This works because when we
say that a structure has components in 𝐴...𝐶 we are not saying
that every slot in that range is present, just that all the slots that
are present are within that range. (Contributed by Jim Kingdon,
26-Feb-2025.)
|
| ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵))
⇒ ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
| |
| Theorem | strle1g 12811 |
Make a structure from a singleton. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| |
| Theorem | strle2g 12812 |
Make a structure from a pair. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
| |
| Theorem | strle3g 12813 |
Make a structure from a triple. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽
& ⊢ 𝐽 < 𝐾
& ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉) |
| |
| Theorem | plusgndx 12814 |
Index value of the df-plusg 12795 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (+g‘ndx) =
2 |
| |
| Theorem | plusgid 12815 |
Utility theorem: index-independent form of df-plusg 12795. (Contributed by
NM, 20-Oct-2012.)
|
| ⊢ +g = Slot
(+g‘ndx) |
| |
| Theorem | plusgndxnn 12816 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 17-Oct-2024.)
|
| ⊢ (+g‘ndx) ∈
ℕ |
| |
| Theorem | plusgslid 12817 |
Slot property of +g. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (+g = Slot
(+g‘ndx) ∧ (+g‘ndx) ∈
ℕ) |
| |
| Theorem | basendxltplusgndx 12818 |
The index of the slot for the base set is less then the index of the slot
for the group operation in an extensible structure. (Contributed by AV,
17-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(+g‘ndx) |
| |
| Theorem | opelstrsl 12819 |
The slot of a structure which contains an ordered pair for that slot.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| |
| Theorem | opelstrbas 12820 |
The base set of a structure with a base set. (Contributed by AV,
10-Nov-2021.)
|
| ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
| |
| Theorem | 1strstrg 12821 |
A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
(Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) |
| |
| Theorem | 1strbas 12822 |
The base set of a constructed one-slot structure. (Contributed by AV,
27-Mar-2020.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2strstrg 12823 |
A constructed two-slot structure. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) |
| |
| Theorem | 2strbasg 12824 |
The base set of a constructed two-slot structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2stropg 12825 |
The other slot of a constructed two-slot structure. (Contributed by
Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| |
| Theorem | 2strstr1g 12826 |
A constructed two-slot structure. Version of 2strstrg 12823 not depending
on the hard-coded index value of the base set. (Contributed by AV,
22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
| |
| Theorem | 2strbas1g 12827 |
The base set of a constructed two-slot structure. Version of 2strbasg 12824
not depending on the hard-coded index value of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | 2strop1g 12828 |
The other slot of a constructed two-slot structure. Version of
2stropg 12825 not depending on the hard-coded index value
of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| |
| Theorem | basendxnplusgndx 12829 |
The slot for the base set is not the slot for the group operation in an
extensible structure. (Contributed by AV, 14-Nov-2021.)
|
| ⊢ (Base‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | grpstrg 12830 |
A constructed group is a structure on 1...2.
(Contributed by
Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) |
| |
| Theorem | grpbaseg 12831 |
The base set of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | grpplusgg 12832 |
The operation of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + =
(+g‘𝐺)) |
| |
| Theorem | ressplusgd 12833 |
+g is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → + =
(+g‘𝐻)) |
| |
| Theorem | mulrndx 12834 |
Index value of the df-mulr 12796 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (.r‘ndx) =
3 |
| |
| Theorem | mulridx 12835 |
Utility theorem: index-independent form of df-mulr 12796. (Contributed by
Mario Carneiro, 8-Jun-2013.)
|
| ⊢ .r = Slot
(.r‘ndx) |
| |
| Theorem | mulrslid 12836 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
| |
| Theorem | plusgndxnmulrndx 12837 |
The slot for the group (addition) operation is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 16-Feb-2020.)
|
| ⊢ (+g‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | basendxnmulrndx 12838 |
The slot for the base set is not the slot for the ring (multiplication)
operation in an extensible structure. (Contributed by AV,
16-Feb-2020.)
|
| ⊢ (Base‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | rngstrg 12839 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
| |
| Theorem | rngbaseg 12840 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | rngplusgg 12841 |
The additive operation of a constructed ring. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + =
(+g‘𝑅)) |
| |
| Theorem | rngmulrg 12842 |
The multiplicative operation of a constructed ring. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · =
(.r‘𝑅)) |
| |
| Theorem | starvndx 12843 |
Index value of the df-starv 12797 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (*𝑟‘ndx) =
4 |
| |
| Theorem | starvid 12844 |
Utility theorem: index-independent form of df-starv 12797. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ *𝑟 = Slot
(*𝑟‘ndx) |
| |
| Theorem | starvslid 12845 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
| ⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
| |
| Theorem | starvndxnbasendx 12846 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | starvndxnplusgndx 12847 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | starvndxnmulrndx 12848 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | ressmulrg 12849 |
.r is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ 𝑆 = (𝑅 ↾s 𝐴)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · =
(.r‘𝑆)) |
| |
| Theorem | srngstrd 12850 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
| |
| Theorem | srngbased 12851 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | srngplusgd 12852 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
| |
| Theorem | srngmulrd 12853 |
The multiplication operation of a constructed star ring. (Contributed
by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → · =
(.r‘𝑅)) |
| |
| Theorem | srnginvld 12854 |
The involution function of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
| |
| Theorem | scandx 12855 |
Index value of the df-sca 12798 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (Scalar‘ndx) = 5 |
| |
| Theorem | scaid 12856 |
Utility theorem: index-independent form of scalar df-sca 12798. (Contributed
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ Scalar = Slot
(Scalar‘ndx) |
| |
| Theorem | scaslid 12857 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
| |
| Theorem | scandxnbasendx 12858 |
The slot for the scalar is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | scandxnplusgndx 12859 |
The slot for the scalar field is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | scandxnmulrndx 12860 |
The slot for the scalar field is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | vscandx 12861 |
Index value of the df-vsca 12799 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ ( ·𝑠
‘ndx) = 6 |
| |
| Theorem | vscaid 12862 |
Utility theorem: index-independent form of scalar product df-vsca 12799.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ ·𝑠 = Slot
( ·𝑠 ‘ndx) |
| |
| Theorem | vscandxnbasendx 12863 |
The slot for the scalar product is not the slot for the base set in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Base‘ndx) |
| |
| Theorem | vscandxnplusgndx 12864 |
The slot for the scalar product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (+g‘ndx) |
| |
| Theorem | vscandxnmulrndx 12865 |
The slot for the scalar product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (.r‘ndx) |
| |
| Theorem | vscandxnscandx 12866 |
The slot for the scalar product is not the slot for the scalar field in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Scalar‘ndx) |
| |
| Theorem | vscaslid 12867 |
Slot property of ·𝑠.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ ( ·𝑠 = Slot
( ·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| |
| Theorem | lmodstrd 12868 |
A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
| |
| Theorem | lmodbased 12869 |
The base set of a constructed left vector space. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| |
| Theorem | lmodplusgd 12870 |
The additive operation of a constructed left vector space. (Contributed
by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
| |
| Theorem | lmodscad 12871 |
The set of scalars of a constructed left vector space. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| |
| Theorem | lmodvscad 12872 |
The scalar product operation of a constructed left vector space.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
| |
| Theorem | ipndx 12873 |
Index value of the df-ip 12800 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢
(·𝑖‘ndx) = 8 |
| |
| Theorem | ipid 12874 |
Utility theorem: index-independent form of df-ip 12800. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ ·𝑖 = Slot
(·𝑖‘ndx) |
| |
| Theorem | ipslid 12875 |
Slot property of ·𝑖.
(Contributed by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ (·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
| |
| Theorem | ipndxnbasendx 12876 |
The slot for the inner product is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | ipndxnplusgndx 12877 |
The slot for the inner product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | ipndxnmulrndx 12878 |
The slot for the inner product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | slotsdifipndx 12879 |
The slot for the scalar is not the index of other slots. (Contributed by
AV, 12-Nov-2024.)
|
| ⊢ (( ·𝑠
‘ndx) ≠ (·𝑖‘ndx) ∧
(Scalar‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | ipsstrd 12880 |
A constructed inner product space is a structure. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| |
| Theorem | ipsbased 12881 |
The base set of a constructed inner product space. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
| |
| Theorem | ipsaddgd 12882 |
The additive operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + =
(+g‘𝐴)) |
| |
| Theorem | ipsmulrd 12883 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × =
(.r‘𝐴)) |
| |
| Theorem | ipsscad 12884 |
The set of scalars of a constructed inner product space. (Contributed
by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) |
| |
| Theorem | ipsvscad 12885 |
The scalar product operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝐴)) |
| |
| Theorem | ipsipd 12886 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 =
(·𝑖‘𝐴)) |
| |
| Theorem | ressscag 12887 |
Scalar is unaffected by restriction. (Contributed by
Mario
Carneiro, 7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
| |
| Theorem | ressvscag 12888 |
·𝑠 is unaffected by
restriction. (Contributed by Mario Carneiro,
7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ · = (
·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → · = (
·𝑠 ‘𝐻)) |
| |
| Theorem | ressipg 12889 |
The inner product is unaffected by restriction. (Contributed by
Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ , =
(·𝑖‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → , =
(·𝑖‘𝐻)) |
| |
| Theorem | tsetndx 12890 |
Index value of the df-tset 12801 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (TopSet‘ndx) = 9 |
| |
| Theorem | tsetid 12891 |
Utility theorem: index-independent form of df-tset 12801. (Contributed by
NM, 20-Oct-2012.)
|
| ⊢ TopSet = Slot
(TopSet‘ndx) |
| |
| Theorem | tsetslid 12892 |
Slot property of TopSet. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ (TopSet = Slot (TopSet‘ndx) ∧
(TopSet‘ndx) ∈ ℕ) |
| |
| Theorem | tsetndxnn 12893 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ∈
ℕ |
| |
| Theorem | basendxlttsetndx 12894 |
The index of the slot for the base set is less then the index of the slot
for the topology in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(TopSet‘ndx) |
| |
| Theorem | tsetndxnbasendx 12895 |
The slot for the topology is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened
by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | tsetndxnplusgndx 12896 |
The slot for the topology is not the slot for the group operation in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | tsetndxnmulrndx 12897 |
The slot for the topology is not the slot for the ring multiplication
operation in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | tsetndxnstarvndx 12898 |
The slot for the topology is not the slot for the involution in an
extensible structure. (Contributed by AV, 11-Nov-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(*𝑟‘ndx) |
| |
| Theorem | slotstnscsi 12899 |
The slots Scalar, ·𝑠 and ·𝑖 are different from the
slot
TopSet. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx)
∧ (TopSet‘ndx) ≠ ( ·𝑠
‘ndx) ∧ (TopSet‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | topgrpstrd 12900 |
A constructed topological group is a structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |