![]() |
Intuitionistic Logic Explorer Theorem List (p. 129 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ressvscag 12801 | ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → · = ( ·𝑠 ‘𝐻)) | ||
Theorem | ressipg 12802 | The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → , = (·𝑖‘𝐻)) | ||
Theorem | tsetndx 12803 | Index value of the df-tset 12714 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (TopSet‘ndx) = 9 | ||
Theorem | tsetid 12804 | Utility theorem: index-independent form of df-tset 12714. (Contributed by NM, 20-Oct-2012.) |
⊢ TopSet = Slot (TopSet‘ndx) | ||
Theorem | tsetslid 12805 | Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.) |
⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | ||
Theorem | tsetndxnn 12806 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ∈ ℕ | ||
Theorem | basendxlttsetndx 12807 | The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (Base‘ndx) < (TopSet‘ndx) | ||
Theorem | tsetndxnbasendx 12808 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
Theorem | tsetndxnplusgndx 12809 | The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
Theorem | tsetndxnmulrndx 12810 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
Theorem | tsetndxnstarvndx 12811 | The slot for the topology is not the slot for the involution in an extensible structure. (Contributed by AV, 11-Nov-2024.) |
⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
Theorem | slotstnscsi 12812 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.) |
⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | topgrpstrd 12813 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) | ||
Theorem | topgrpbasd 12814 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | ||
Theorem | topgrpplusgd 12815 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + = (+g‘𝑊)) | ||
Theorem | topgrptsetd 12816 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | plendx 12817 | Index value of the df-ple 12715 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ (le‘ndx) = ;10 | ||
Theorem | pleid 12818 | Utility theorem: self-referencing, index-independent form of df-ple 12715. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
⊢ le = Slot (le‘ndx) | ||
Theorem | pleslid 12819 | Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.) |
⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | ||
Theorem | plendxnn 12820 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ∈ ℕ | ||
Theorem | basendxltplendx 12821 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
⊢ (Base‘ndx) < (le‘ndx) | ||
Theorem | plendxnbasendx 12822 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ≠ (Base‘ndx) | ||
Theorem | plendxnplusgndx 12823 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
⊢ (le‘ndx) ≠ (+g‘ndx) | ||
Theorem | plendxnmulrndx 12824 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (.r‘ndx) | ||
Theorem | plendxnscandx 12825 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
Theorem | plendxnvscandx 12826 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
Theorem | slotsdifplendx 12827 | The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
Theorem | dsndx 12828 | Index value of the df-ds 12717 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (dist‘ndx) = ;12 | ||
Theorem | dsid 12829 | Utility theorem: index-independent form of df-ds 12717. (Contributed by Mario Carneiro, 23-Dec-2013.) |
⊢ dist = Slot (dist‘ndx) | ||
Theorem | dsslid 12830 | Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.) |
⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | ||
Theorem | dsndxnn 12831 | The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ∈ ℕ | ||
Theorem | basendxltdsndx 12832 | The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (dist‘ndx) | ||
Theorem | dsndxnbasendx 12833 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
Theorem | dsndxnplusgndx 12834 | The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
Theorem | dsndxnmulrndx 12835 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
Theorem | slotsdnscsi 12836 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.) |
⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | dsndxntsetndx 12837 | The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
Theorem | slotsdifdsndx 12838 | The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
Theorem | unifndx 12839 | Index value of the df-unif 12718 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.) |
⊢ (UnifSet‘ndx) = ;13 | ||
Theorem | unifid 12840 | Utility theorem: index-independent form of df-unif 12718. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ UnifSet = Slot (UnifSet‘ndx) | ||
Theorem | unifndxnn 12841 | The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ∈ ℕ | ||
Theorem | basendxltunifndx 12842 | The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
Theorem | unifndxnbasendx 12843 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
Theorem | unifndxntsetndx 12844 | The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (TopSet‘ndx) | ||
Theorem | slotsdifunifndx 12845 | The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) | ||
Theorem | homid 12846 | Utility theorem: index-independent form of df-hom 12719. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ Hom = Slot (Hom ‘ndx) | ||
Theorem | homslid 12847 | Slot property of Hom. (Contributed by Jim Kingdon, 20-Mar-2025.) |
⊢ (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ) | ||
Theorem | ccoid 12848 | Utility theorem: index-independent form of df-cco 12720. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ comp = Slot (comp‘ndx) | ||
Theorem | ccoslid 12849 | Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.) |
⊢ (comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ) | ||
Syntax | crest 12850 | Extend class notation with the function returning a subspace topology. |
class ↾t | ||
Syntax | ctopn 12851 | Extend class notation with the topology extractor function. |
class TopOpen | ||
Definition | df-rest 12852* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
Definition | df-topn 12853 | Define the topology extractor function. This differs from df-tset 12714 when a structure has been restricted using df-iress 12626; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
Theorem | restfn 12854 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
⊢ ↾t Fn (V × V) | ||
Theorem | topnfn 12855 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen Fn V | ||
Theorem | restval 12856* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
Theorem | elrest 12857* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
Theorem | elrestr 12858 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
Theorem | restid2 12859 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
Theorem | restsspw 12860 | The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 | ||
Theorem | restid 12861 | The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) | ||
Theorem | topnvalg 12862 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) | ||
Theorem | topnidg 12863 | Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊)) | ||
Theorem | topnpropgd 12864 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
Syntax | ctg 12865 | Extend class notation with a function that converts a basis to its corresponding topology. |
class topGen | ||
Syntax | cpt 12866 | Extend class notation with a function whose value is a product topology. |
class ∏t | ||
Syntax | c0g 12867 | Extend class notation with group identity element. |
class 0g | ||
Syntax | cgsu 12868 | Extend class notation to include finitely supported group sums. |
class Σg | ||
Definition | df-0g 12869* | Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-igsum 12870. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.) |
⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | ||
Definition | df-igsum 12870* |
Define a finite group sum (also called "iterated sum") of a
structure.
Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺. 1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc. 3. This definition does not handle other cases. (Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.) |
⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) | ||
Definition | df-topgen 12871* | Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.) |
⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | ||
Definition | df-pt 12872* | Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ ∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) | ||
Theorem | tgval 12873* | The topology generated by a basis. See also tgval2 14219 and tgval3 14226. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | ||
Theorem | tgvalex 12874 | The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) | ||
Theorem | ptex 12875 | Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.) |
⊢ (𝐹 ∈ 𝑉 → (∏t‘𝐹) ∈ V) | ||
Syntax | cprds 12876 | The function constructing structure products. |
class Xs | ||
Syntax | cpws 12877 | The function constructing structure powers. |
class ↑s | ||
Definition | df-prds 12878* | Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) |
⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑠〉, 〈( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) | ||
Theorem | reldmprds 12879 | The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) |
⊢ Rel dom Xs | ||
Theorem | prdsex 12880 | Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑆Xs𝑅) ∈ V) | ||
Definition | df-pws 12881* | Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | ||
Syntax | cimas 12882 | Image structure function. |
class “s | ||
Syntax | cqus 12883 | Quotient structure function. |
class /s | ||
Syntax | cxps 12884 | Binary product structure function. |
class ×s | ||
Definition | df-iimas 12885* |
Define an image structure, which takes a structure and a function on the
base set, and maps all the operations via the function. For this to
work properly 𝑓 must either be injective or satisfy
the
well-definedness condition 𝑓(𝑎) = 𝑓(𝑐) ∧ 𝑓(𝑏) = 𝑓(𝑑) →
𝑓(𝑎 + 𝑏) = 𝑓(𝑐 + 𝑑) for each relevant operation.
Note that although we call this an "image" by association to df-ima 4672, in order to keep the definition simple we consider only the case when the domain of 𝐹 is equal to the base set of 𝑅. Other cases can be achieved by restricting 𝐹 (with df-res 4671) and/or 𝑅 ( with df-iress 12626) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.) |
⊢ “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ ⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉, 〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) | ||
Definition | df-qus 12886* | Define a quotient ring (or quotient group), which is a special case of an image structure df-iimas 12885 where the image function is 𝑥 ↦ [𝑥]𝑒. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | ||
Definition | df-xps 12887* | Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
⊢ ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) | ||
Theorem | imasex 12888 | Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐹 “s 𝑅) ∈ V) | ||
Theorem | imasival 12889* | Value of an image structure. The is a lemma for the theorems imasbas 12890, imasplusg 12891, and imasmulr 12892 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑈 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), ✚ 〉, 〈(.r‘ndx), ∙ 〉}) | ||
Theorem | imasbas 12890 | The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) | ||
Theorem | imasplusg 12891* | The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) | ||
Theorem | imasmulr 12892* | The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | ||
Theorem | f1ocpbllem 12893 | Lemma for f1ocpbl 12894. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | f1ocpbl 12894 | An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) | ||
Theorem | f1ovscpbl 12895 | An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))) | ||
Theorem | f1olecpbl 12896 | An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) | ||
Theorem | imasaddfnlemg 12897* | The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝐶) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
Theorem | imasaddvallemg 12898* | The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
Theorem | imasaddflemg 12899* | The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
Theorem | imasaddfn 12900* | The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |