Theorem List for Intuitionistic Logic Explorer - 12801-12900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | 2strop1g 12801 |
The other slot of a constructed two-slot structure. Version of
2stropg 12798 not depending on the hard-coded index value
of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| |
| Theorem | basendxnplusgndx 12802 |
The slot for the base set is not the slot for the group operation in an
extensible structure. (Contributed by AV, 14-Nov-2021.)
|
| ⊢ (Base‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | grpstrg 12803 |
A constructed group is a structure on 1...2.
(Contributed by
Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) |
| |
| Theorem | grpbaseg 12804 |
The base set of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | grpplusgg 12805 |
The operation of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + =
(+g‘𝐺)) |
| |
| Theorem | ressplusgd 12806 |
+g is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → + =
(+g‘𝐻)) |
| |
| Theorem | mulrndx 12807 |
Index value of the df-mulr 12769 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (.r‘ndx) =
3 |
| |
| Theorem | mulridx 12808 |
Utility theorem: index-independent form of df-mulr 12769. (Contributed by
Mario Carneiro, 8-Jun-2013.)
|
| ⊢ .r = Slot
(.r‘ndx) |
| |
| Theorem | mulrslid 12809 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
| |
| Theorem | plusgndxnmulrndx 12810 |
The slot for the group (addition) operation is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 16-Feb-2020.)
|
| ⊢ (+g‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | basendxnmulrndx 12811 |
The slot for the base set is not the slot for the ring (multiplication)
operation in an extensible structure. (Contributed by AV,
16-Feb-2020.)
|
| ⊢ (Base‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | rngstrg 12812 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
| |
| Theorem | rngbaseg 12813 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | rngplusgg 12814 |
The additive operation of a constructed ring. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + =
(+g‘𝑅)) |
| |
| Theorem | rngmulrg 12815 |
The multiplicative operation of a constructed ring. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · =
(.r‘𝑅)) |
| |
| Theorem | starvndx 12816 |
Index value of the df-starv 12770 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (*𝑟‘ndx) =
4 |
| |
| Theorem | starvid 12817 |
Utility theorem: index-independent form of df-starv 12770. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ *𝑟 = Slot
(*𝑟‘ndx) |
| |
| Theorem | starvslid 12818 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
| ⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
| |
| Theorem | starvndxnbasendx 12819 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | starvndxnplusgndx 12820 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | starvndxnmulrndx 12821 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | ressmulrg 12822 |
.r is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ 𝑆 = (𝑅 ↾s 𝐴)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · =
(.r‘𝑆)) |
| |
| Theorem | srngstrd 12823 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
| |
| Theorem | srngbased 12824 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | srngplusgd 12825 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
| |
| Theorem | srngmulrd 12826 |
The multiplication operation of a constructed star ring. (Contributed
by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → · =
(.r‘𝑅)) |
| |
| Theorem | srnginvld 12827 |
The involution function of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
| |
| Theorem | scandx 12828 |
Index value of the df-sca 12771 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (Scalar‘ndx) = 5 |
| |
| Theorem | scaid 12829 |
Utility theorem: index-independent form of scalar df-sca 12771. (Contributed
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ Scalar = Slot
(Scalar‘ndx) |
| |
| Theorem | scaslid 12830 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
| |
| Theorem | scandxnbasendx 12831 |
The slot for the scalar is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | scandxnplusgndx 12832 |
The slot for the scalar field is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | scandxnmulrndx 12833 |
The slot for the scalar field is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | vscandx 12834 |
Index value of the df-vsca 12772 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ ( ·𝑠
‘ndx) = 6 |
| |
| Theorem | vscaid 12835 |
Utility theorem: index-independent form of scalar product df-vsca 12772.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ ·𝑠 = Slot
( ·𝑠 ‘ndx) |
| |
| Theorem | vscandxnbasendx 12836 |
The slot for the scalar product is not the slot for the base set in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Base‘ndx) |
| |
| Theorem | vscandxnplusgndx 12837 |
The slot for the scalar product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (+g‘ndx) |
| |
| Theorem | vscandxnmulrndx 12838 |
The slot for the scalar product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (.r‘ndx) |
| |
| Theorem | vscandxnscandx 12839 |
The slot for the scalar product is not the slot for the scalar field in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Scalar‘ndx) |
| |
| Theorem | vscaslid 12840 |
Slot property of ·𝑠.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ ( ·𝑠 = Slot
( ·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| |
| Theorem | lmodstrd 12841 |
A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
| |
| Theorem | lmodbased 12842 |
The base set of a constructed left vector space. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| |
| Theorem | lmodplusgd 12843 |
The additive operation of a constructed left vector space. (Contributed
by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
| |
| Theorem | lmodscad 12844 |
The set of scalars of a constructed left vector space. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| |
| Theorem | lmodvscad 12845 |
The scalar product operation of a constructed left vector space.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
| |
| Theorem | ipndx 12846 |
Index value of the df-ip 12773 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢
(·𝑖‘ndx) = 8 |
| |
| Theorem | ipid 12847 |
Utility theorem: index-independent form of df-ip 12773. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ ·𝑖 = Slot
(·𝑖‘ndx) |
| |
| Theorem | ipslid 12848 |
Slot property of ·𝑖.
(Contributed by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ (·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
| |
| Theorem | ipndxnbasendx 12849 |
The slot for the inner product is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | ipndxnplusgndx 12850 |
The slot for the inner product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | ipndxnmulrndx 12851 |
The slot for the inner product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | slotsdifipndx 12852 |
The slot for the scalar is not the index of other slots. (Contributed by
AV, 12-Nov-2024.)
|
| ⊢ (( ·𝑠
‘ndx) ≠ (·𝑖‘ndx) ∧
(Scalar‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | ipsstrd 12853 |
A constructed inner product space is a structure. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| |
| Theorem | ipsbased 12854 |
The base set of a constructed inner product space. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
| |
| Theorem | ipsaddgd 12855 |
The additive operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + =
(+g‘𝐴)) |
| |
| Theorem | ipsmulrd 12856 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × =
(.r‘𝐴)) |
| |
| Theorem | ipsscad 12857 |
The set of scalars of a constructed inner product space. (Contributed
by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) |
| |
| Theorem | ipsvscad 12858 |
The scalar product operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝐴)) |
| |
| Theorem | ipsipd 12859 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 =
(·𝑖‘𝐴)) |
| |
| Theorem | ressscag 12860 |
Scalar is unaffected by restriction. (Contributed by
Mario
Carneiro, 7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
| |
| Theorem | ressvscag 12861 |
·𝑠 is unaffected by
restriction. (Contributed by Mario Carneiro,
7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ · = (
·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → · = (
·𝑠 ‘𝐻)) |
| |
| Theorem | ressipg 12862 |
The inner product is unaffected by restriction. (Contributed by
Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ , =
(·𝑖‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → , =
(·𝑖‘𝐻)) |
| |
| Theorem | tsetndx 12863 |
Index value of the df-tset 12774 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (TopSet‘ndx) = 9 |
| |
| Theorem | tsetid 12864 |
Utility theorem: index-independent form of df-tset 12774. (Contributed by
NM, 20-Oct-2012.)
|
| ⊢ TopSet = Slot
(TopSet‘ndx) |
| |
| Theorem | tsetslid 12865 |
Slot property of TopSet. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ (TopSet = Slot (TopSet‘ndx) ∧
(TopSet‘ndx) ∈ ℕ) |
| |
| Theorem | tsetndxnn 12866 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ∈
ℕ |
| |
| Theorem | basendxlttsetndx 12867 |
The index of the slot for the base set is less then the index of the slot
for the topology in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(TopSet‘ndx) |
| |
| Theorem | tsetndxnbasendx 12868 |
The slot for the topology is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened
by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | tsetndxnplusgndx 12869 |
The slot for the topology is not the slot for the group operation in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | tsetndxnmulrndx 12870 |
The slot for the topology is not the slot for the ring multiplication
operation in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | tsetndxnstarvndx 12871 |
The slot for the topology is not the slot for the involution in an
extensible structure. (Contributed by AV, 11-Nov-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(*𝑟‘ndx) |
| |
| Theorem | slotstnscsi 12872 |
The slots Scalar, ·𝑠 and ·𝑖 are different from the
slot
TopSet. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx)
∧ (TopSet‘ndx) ≠ ( ·𝑠
‘ndx) ∧ (TopSet‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | topgrpstrd 12873 |
A constructed topological group is a structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
| |
| Theorem | topgrpbasd 12874 |
The base set of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| |
| Theorem | topgrpplusgd 12875 |
The additive operation of a constructed topological group. (Contributed
by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
| |
| Theorem | topgrptsetd 12876 |
The topology of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) |
| |
| Theorem | plendx 12877 |
Index value of the df-ple 12775 slot. (Contributed by Mario Carneiro,
14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ (le‘ndx) = ;10 |
| |
| Theorem | pleid 12878 |
Utility theorem: self-referencing, index-independent form of df-ple 12775.
(Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ le = Slot (le‘ndx) |
| |
| Theorem | pleslid 12879 |
Slot property of le. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ (le = Slot (le‘ndx) ∧
(le‘ndx) ∈ ℕ) |
| |
| Theorem | plendxnn 12880 |
The index value of the order slot is a positive integer. This property
should be ensured for every concrete coding because otherwise it could not
be used in an extensible structure (slots must be positive integers).
(Contributed by AV, 30-Oct-2024.)
|
| ⊢ (le‘ndx) ∈
ℕ |
| |
| Theorem | basendxltplendx 12881 |
The index value of the Base slot is less than the index
value of the
le slot. (Contributed by AV, 30-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(le‘ndx) |
| |
| Theorem | plendxnbasendx 12882 |
The slot for the order is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV,
30-Oct-2024.)
|
| ⊢ (le‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | plendxnplusgndx 12883 |
The slot for the "less than or equal to" ordering is not the slot for
the
group operation in an extensible structure. (Contributed by AV,
18-Oct-2024.)
|
| ⊢ (le‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | plendxnmulrndx 12884 |
The slot for the "less than or equal to" ordering is not the slot for
the
ring multiplication operation in an extensible structure. (Contributed by
AV, 1-Nov-2024.)
|
| ⊢ (le‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | plendxnscandx 12885 |
The slot for the "less than or equal to" ordering is not the slot for
the
scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
|
| ⊢ (le‘ndx) ≠
(Scalar‘ndx) |
| |
| Theorem | plendxnvscandx 12886 |
The slot for the "less than or equal to" ordering is not the slot for
the
scalar product in an extensible structure. (Contributed by AV,
1-Nov-2024.)
|
| ⊢ (le‘ndx) ≠ (
·𝑠 ‘ndx) |
| |
| Theorem | slotsdifplendx 12887 |
The index of the slot for the distance is not the index of other slots.
(Contributed by AV, 11-Nov-2024.)
|
| ⊢ ((*𝑟‘ndx) ≠
(le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) |
| |
| Theorem | dsndx 12888 |
Index value of the df-ds 12777 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (dist‘ndx) = ;12 |
| |
| Theorem | dsid 12889 |
Utility theorem: index-independent form of df-ds 12777. (Contributed by
Mario Carneiro, 23-Dec-2013.)
|
| ⊢ dist = Slot
(dist‘ndx) |
| |
| Theorem | dsslid 12890 |
Slot property of dist. (Contributed by Jim Kingdon,
6-May-2023.)
|
| ⊢ (dist = Slot (dist‘ndx) ∧
(dist‘ndx) ∈ ℕ) |
| |
| Theorem | dsndxnn 12891 |
The index of the slot for the distance in an extensible structure is a
positive integer. (Contributed by AV, 28-Oct-2024.)
|
| ⊢ (dist‘ndx) ∈
ℕ |
| |
| Theorem | basendxltdsndx 12892 |
The index of the slot for the base set is less then the index of the slot
for the distance in an extensible structure. (Contributed by AV,
28-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(dist‘ndx) |
| |
| Theorem | dsndxnbasendx 12893 |
The slot for the distance is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened
by AV, 28-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | dsndxnplusgndx 12894 |
The slot for the distance function is not the slot for the group operation
in an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | dsndxnmulrndx 12895 |
The slot for the distance function is not the slot for the ring
multiplication operation in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | slotsdnscsi 12896 |
The slots Scalar, ·𝑠 and ·𝑖 are different from the
slot
dist. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ ((dist‘ndx) ≠ (Scalar‘ndx)
∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx)
∧ (dist‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | dsndxntsetndx 12897 |
The slot for the distance function is not the slot for the topology in an
extensible structure. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(TopSet‘ndx) |
| |
| Theorem | slotsdifdsndx 12898 |
The index of the slot for the distance is not the index of other slots.
(Contributed by AV, 11-Nov-2024.)
|
| ⊢ ((*𝑟‘ndx) ≠
(dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) |
| |
| Theorem | unifndx 12899 |
Index value of the df-unif 12778 slot. (Contributed by Thierry Arnoux,
17-Dec-2017.) (New usage is discouraged.)
|
| ⊢ (UnifSet‘ndx) = ;13 |
| |
| Theorem | unifid 12900 |
Utility theorem: index-independent form of df-unif 12778. (Contributed by
Thierry Arnoux, 17-Dec-2017.)
|
| ⊢ UnifSet = Slot
(UnifSet‘ndx) |