HomeHome Intuitionistic Logic Explorer
Theorem List (p. 129 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12801-12900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremressvscag 12801 ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐻 = (𝐺s 𝐴)    &    · = ( ·𝑠𝐺)       ((𝐺𝑋𝐴𝑉) → · = ( ·𝑠𝐻))
 
Theoremressipg 12802 The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐻 = (𝐺s 𝐴)    &    , = (·𝑖𝐺)       ((𝐺𝑋𝐴𝑉) → , = (·𝑖𝐻))
 
Theoremtsetndx 12803 Index value of the df-tset 12714 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(TopSet‘ndx) = 9
 
Theoremtsetid 12804 Utility theorem: index-independent form of df-tset 12714. (Contributed by NM, 20-Oct-2012.)
TopSet = Slot (TopSet‘ndx)
 
Theoremtsetslid 12805 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
(TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
 
Theoremtsetndxnn 12806 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.)
(TopSet‘ndx) ∈ ℕ
 
Theorembasendxlttsetndx 12807 The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.)
(Base‘ndx) < (TopSet‘ndx)
 
Theoremtsetndxnbasendx 12808 The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.)
(TopSet‘ndx) ≠ (Base‘ndx)
 
Theoremtsetndxnplusgndx 12809 The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(TopSet‘ndx) ≠ (+g‘ndx)
 
Theoremtsetndxnmulrndx 12810 The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
(TopSet‘ndx) ≠ (.r‘ndx)
 
Theoremtsetndxnstarvndx 12811 The slot for the topology is not the slot for the involution in an extensible structure. (Contributed by AV, 11-Nov-2024.)
(TopSet‘ndx) ≠ (*𝑟‘ndx)
 
Theoremslotstnscsi 12812 The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))
 
Theoremtopgrpstrd 12813 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝑊 Struct ⟨1, 9⟩)
 
Theoremtopgrpbasd 12814 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremtopgrpplusgd 12815 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑+ = (+g𝑊))
 
Theoremtopgrptsetd 12816 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐽 = (TopSet‘𝑊))
 
Theoremplendx 12817 Index value of the df-ple 12715 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
(le‘ndx) = 10
 
Theorempleid 12818 Utility theorem: self-referencing, index-independent form of df-ple 12715. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
le = Slot (le‘ndx)
 
Theorempleslid 12819 Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.)
(le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
 
Theoremplendxnn 12820 The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
(le‘ndx) ∈ ℕ
 
Theorembasendxltplendx 12821 The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.)
(Base‘ndx) < (le‘ndx)
 
Theoremplendxnbasendx 12822 The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.)
(le‘ndx) ≠ (Base‘ndx)
 
Theoremplendxnplusgndx 12823 The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(le‘ndx) ≠ (+g‘ndx)
 
Theoremplendxnmulrndx 12824 The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ (.r‘ndx)
 
Theoremplendxnscandx 12825 The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ (Scalar‘ndx)
 
Theoremplendxnvscandx 12826 The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ ( ·𝑠 ‘ndx)
 
Theoremslotsdifplendx 12827 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx))
 
Theoremdsndx 12828 Index value of the df-ds 12717 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(dist‘ndx) = 12
 
Theoremdsid 12829 Utility theorem: index-independent form of df-ds 12717. (Contributed by Mario Carneiro, 23-Dec-2013.)
dist = Slot (dist‘ndx)
 
Theoremdsslid 12830 Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.)
(dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
 
Theoremdsndxnn 12831 The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
(dist‘ndx) ∈ ℕ
 
Theorembasendxltdsndx 12832 The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(Base‘ndx) < (dist‘ndx)
 
Theoremdsndxnbasendx 12833 The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.)
(dist‘ndx) ≠ (Base‘ndx)
 
Theoremdsndxnplusgndx 12834 The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(dist‘ndx) ≠ (+g‘ndx)
 
Theoremdsndxnmulrndx 12835 The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
(dist‘ndx) ≠ (.r‘ndx)
 
Theoremslotsdnscsi 12836 The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.)
((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx))
 
Theoremdsndxntsetndx 12837 The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(dist‘ndx) ≠ (TopSet‘ndx)
 
Theoremslotsdifdsndx 12838 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx))
 
Theoremunifndx 12839 Index value of the df-unif 12718 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.)
(UnifSet‘ndx) = 13
 
Theoremunifid 12840 Utility theorem: index-independent form of df-unif 12718. (Contributed by Thierry Arnoux, 17-Dec-2017.)
UnifSet = Slot (UnifSet‘ndx)
 
Theoremunifndxnn 12841 The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
(UnifSet‘ndx) ∈ ℕ
 
Theorembasendxltunifndx 12842 The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(Base‘ndx) < (UnifSet‘ndx)
 
Theoremunifndxnbasendx 12843 The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
(UnifSet‘ndx) ≠ (Base‘ndx)
 
Theoremunifndxntsetndx 12844 The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(UnifSet‘ndx) ≠ (TopSet‘ndx)
 
Theoremslotsdifunifndx 12845 The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
 
Theoremhomid 12846 Utility theorem: index-independent form of df-hom 12719. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hom = Slot (Hom ‘ndx)
 
Theoremhomslid 12847 Slot property of Hom. (Contributed by Jim Kingdon, 20-Mar-2025.)
(Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
 
Theoremccoid 12848 Utility theorem: index-independent form of df-cco 12720. (Contributed by Mario Carneiro, 7-Jan-2017.)
comp = Slot (comp‘ndx)
 
Theoremccoslid 12849 Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.)
(comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ)
 
6.1.3  Definition of the structure product
 
Syntaxcrest 12850 Extend class notation with the function returning a subspace topology.
class t
 
Syntaxctopn 12851 Extend class notation with the topology extractor function.
class TopOpen
 
Definitiondf-rest 12852* Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
 
Definitiondf-topn 12853 Define the topology extractor function. This differs from df-tset 12714 when a structure has been restricted using df-iress 12626; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
 
Theoremrestfn 12854 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
t Fn (V × V)
 
Theoremtopnfn 12855 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen Fn V
 
Theoremrestval 12856* The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
 
Theoremelrest 12857* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
 
Theoremelrestr 12858 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
 
Theoremrestid2 12859 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
 
Theoremrestsspw 12860 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽t 𝐴) ⊆ 𝒫 𝐴
 
Theoremrestid 12861 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
 
Theoremtopnvalg 12862 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
 
Theoremtopnidg 12863 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊))
 
Theoremtopnpropgd 12864 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
 
Syntaxctg 12865 Extend class notation with a function that converts a basis to its corresponding topology.
class topGen
 
Syntaxcpt 12866 Extend class notation with a function whose value is a product topology.
class t
 
Syntaxc0g 12867 Extend class notation with group identity element.
class 0g
 
Syntaxcgsu 12868 Extend class notation to include finitely supported group sums.
class Σg
 
Definitiondf-0g 12869* Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-igsum 12870. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.)
0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
 
Definitiondf-igsum 12870* Define a finite group sum (also called "iterated sum") of a structure.

Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺.

1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity.

2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
 
Definitiondf-topgen 12871* Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.)
topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
 
Definitiondf-pt 12872* Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.)
t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
 
Theoremtgval 12873* The topology generated by a basis. See also tgval2 14219 and tgval3 14226. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
 
Theoremtgvalex 12874 The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
(𝐵𝑉 → (topGen‘𝐵) ∈ V)
 
Theoremptex 12875 Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
(𝐹𝑉 → (∏t𝐹) ∈ V)
 
Syntaxcprds 12876 The function constructing structure products.
class Xs
 
Syntaxcpws 12877 The function constructing structure powers.
class s
 
Definitiondf-prds 12878* Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
 
Theoremreldmprds 12879 The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Rel dom Xs
 
Theoremprdsex 12880 Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.)
((𝑆𝑉𝑅𝑊) → (𝑆Xs𝑅) ∈ V)
 
Definitiondf-pws 12881* Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.)
s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
 
6.1.4  Definition of the structure quotient
 
Syntaxcimas 12882 Image structure function.
class s
 
Syntaxcqus 12883 Quotient structure function.
class /s
 
Syntaxcxps 12884 Binary product structure function.
class ×s
 
Definitiondf-iimas 12885* Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly 𝑓 must either be injective or satisfy the well-definedness condition 𝑓(𝑎) = 𝑓(𝑐) ∧ 𝑓(𝑏) = 𝑓(𝑑) → 𝑓(𝑎 + 𝑏) = 𝑓(𝑐 + 𝑑) for each relevant operation.

Note that although we call this an "image" by association to df-ima 4672, in order to keep the definition simple we consider only the case when the domain of 𝐹 is equal to the base set of 𝑅. Other cases can be achieved by restricting 𝐹 (with df-res 4671) and/or 𝑅 ( with df-iress 12626) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.)

s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
 
Definitiondf-qus 12886* Define a quotient ring (or quotient group), which is a special case of an image structure df-iimas 12885 where the image function is 𝑥 ↦ [𝑥]𝑒. (Contributed by Mario Carneiro, 23-Feb-2015.)
/s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
 
Definitiondf-xps 12887* Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})))
 
Theoremimasex 12888 Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)
 
Theoremimasival 12889* Value of an image structure. The is a lemma for the theorems imasbas 12890, imasplusg 12891, and imasmulr 12892 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    × = (.r𝑅)    &    · = ( ·𝑠𝑅)    &   (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})    &   (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})    &   (𝜑𝐹:𝑉onto𝐵)    &   (𝜑𝑅𝑍)       (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
 
Theoremimasbas 12890 The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   (𝜑𝑅𝑍)       (𝜑𝐵 = (Base‘𝑈))
 
Theoremimasplusg 12891* The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   (𝜑𝑅𝑍)    &    + = (+g𝑅)    &    = (+g𝑈)       (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
 
Theoremimasmulr 12892* The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   (𝜑𝑅𝑍)    &    · = (.r𝑅)    &    = (.r𝑈)       (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
 
Theoremf1ocpbllem 12893 Lemma for f1ocpbl 12894. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝐹:𝑉1-1-onto𝑋)       ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremf1ocpbl 12894 An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝐹:𝑉1-1-onto𝑋)       ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
 
Theoremf1ovscpbl 12895 An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
(𝜑𝐹:𝑉1-1-onto𝑋)       ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))
 
Theoremf1olecpbl 12896 An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝐹:𝑉1-1-onto𝑋)       ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐴𝑁𝐵𝐶𝑁𝐷)))
 
Theoremimasaddfnlemg 12897* The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
(𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})    &   (𝜑𝑉𝑊)    &   (𝜑·𝐶)       (𝜑 Fn (𝐵 × 𝐵))
 
Theoremimasaddvallemg 12898* The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.)
(𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})    &   (𝜑𝑉𝑊)    &   (𝜑·𝐶)       ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
 
Theoremimasaddflemg 12899* The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
(𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})    &   (𝜑𝑉𝑊)    &   (𝜑·𝐶)    &   ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)       (𝜑 :(𝐵 × 𝐵)⟶𝐵)
 
Theoremimasaddfn 12900* The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
(𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑𝑅𝑍)    &    · = (+g𝑅)    &    = (+g𝑈)       (𝜑 Fn (𝐵 × 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >