Detailed syntax breakdown of Definition df-mr
Step | Hyp | Ref
| Expression |
1 | | cmr 7201 |
. 2
class
·R |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | 2 | cv 1331 |
. . . . . 6
class 𝑥 |
4 | | cnr 7196 |
. . . . . 6
class
R |
5 | 3, 4 | wcel 2125 |
. . . . 5
wff 𝑥 ∈
R |
6 | | vy |
. . . . . . 7
setvar 𝑦 |
7 | 6 | cv 1331 |
. . . . . 6
class 𝑦 |
8 | 7, 4 | wcel 2125 |
. . . . 5
wff 𝑦 ∈
R |
9 | 5, 8 | wa 103 |
. . . 4
wff (𝑥 ∈ R ∧
𝑦 ∈
R) |
10 | | vw |
. . . . . . . . . . . . . 14
setvar 𝑤 |
11 | 10 | cv 1331 |
. . . . . . . . . . . . 13
class 𝑤 |
12 | | vv |
. . . . . . . . . . . . . 14
setvar 𝑣 |
13 | 12 | cv 1331 |
. . . . . . . . . . . . 13
class 𝑣 |
14 | 11, 13 | cop 3559 |
. . . . . . . . . . . 12
class
〈𝑤, 𝑣〉 |
15 | | cer 7195 |
. . . . . . . . . . . 12
class
~R |
16 | 14, 15 | cec 6467 |
. . . . . . . . . . 11
class
[〈𝑤, 𝑣〉]
~R |
17 | 3, 16 | wceq 1332 |
. . . . . . . . . 10
wff 𝑥 = [〈𝑤, 𝑣〉]
~R |
18 | | vu |
. . . . . . . . . . . . . 14
setvar 𝑢 |
19 | 18 | cv 1331 |
. . . . . . . . . . . . 13
class 𝑢 |
20 | | vf |
. . . . . . . . . . . . . 14
setvar 𝑓 |
21 | 20 | cv 1331 |
. . . . . . . . . . . . 13
class 𝑓 |
22 | 19, 21 | cop 3559 |
. . . . . . . . . . . 12
class
〈𝑢, 𝑓〉 |
23 | 22, 15 | cec 6467 |
. . . . . . . . . . 11
class
[〈𝑢, 𝑓〉]
~R |
24 | 7, 23 | wceq 1332 |
. . . . . . . . . 10
wff 𝑦 = [〈𝑢, 𝑓〉]
~R |
25 | 17, 24 | wa 103 |
. . . . . . . . 9
wff (𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R
) |
26 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
27 | 26 | cv 1331 |
. . . . . . . . . 10
class 𝑧 |
28 | | cmp 7193 |
. . . . . . . . . . . . . 14
class
·P |
29 | 11, 19, 28 | co 5814 |
. . . . . . . . . . . . 13
class (𝑤
·P 𝑢) |
30 | 13, 21, 28 | co 5814 |
. . . . . . . . . . . . 13
class (𝑣
·P 𝑓) |
31 | | cpp 7192 |
. . . . . . . . . . . . 13
class
+P |
32 | 29, 30, 31 | co 5814 |
. . . . . . . . . . . 12
class ((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)) |
33 | 11, 21, 28 | co 5814 |
. . . . . . . . . . . . 13
class (𝑤
·P 𝑓) |
34 | 13, 19, 28 | co 5814 |
. . . . . . . . . . . . 13
class (𝑣
·P 𝑢) |
35 | 33, 34, 31 | co 5814 |
. . . . . . . . . . . 12
class ((𝑤
·P 𝑓) +P (𝑣
·P 𝑢)) |
36 | 32, 35 | cop 3559 |
. . . . . . . . . . 11
class
〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉 |
37 | 36, 15 | cec 6467 |
. . . . . . . . . 10
class
[〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉]
~R |
38 | 27, 37 | wceq 1332 |
. . . . . . . . 9
wff 𝑧 = [〈((𝑤 ·P 𝑢) +P
(𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉]
~R |
39 | 25, 38 | wa 103 |
. . . . . . . 8
wff ((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) |
40 | 39, 20 | wex 1469 |
. . . . . . 7
wff
∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) |
41 | 40, 18 | wex 1469 |
. . . . . 6
wff
∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) |
42 | 41, 12 | wex 1469 |
. . . . 5
wff
∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) |
43 | 42, 10 | wex 1469 |
. . . 4
wff
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) |
44 | 9, 43 | wa 103 |
. . 3
wff ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
)) |
45 | 44, 2, 6, 26 | coprab 5815 |
. 2
class
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} |
46 | 1, 45 | wceq 1332 |
1
wff
·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} |