Step | Hyp | Ref
| Expression |
1 | | cmr 7301 |
. 2
class
ยทR |
2 | | vx |
. . . . . . 7
setvar ๐ฅ |
3 | 2 | cv 1352 |
. . . . . 6
class ๐ฅ |
4 | | cnr 7296 |
. . . . . 6
class
R |
5 | 3, 4 | wcel 2148 |
. . . . 5
wff ๐ฅ โ
R |
6 | | vy |
. . . . . . 7
setvar ๐ฆ |
7 | 6 | cv 1352 |
. . . . . 6
class ๐ฆ |
8 | 7, 4 | wcel 2148 |
. . . . 5
wff ๐ฆ โ
R |
9 | 5, 8 | wa 104 |
. . . 4
wff (๐ฅ โ R โง
๐ฆ โ
R) |
10 | | vw |
. . . . . . . . . . . . . 14
setvar ๐ค |
11 | 10 | cv 1352 |
. . . . . . . . . . . . 13
class ๐ค |
12 | | vv |
. . . . . . . . . . . . . 14
setvar ๐ฃ |
13 | 12 | cv 1352 |
. . . . . . . . . . . . 13
class ๐ฃ |
14 | 11, 13 | cop 3596 |
. . . . . . . . . . . 12
class
โจ๐ค, ๐ฃโฉ |
15 | | cer 7295 |
. . . . . . . . . . . 12
class
~R |
16 | 14, 15 | cec 6533 |
. . . . . . . . . . 11
class
[โจ๐ค, ๐ฃโฉ]
~R |
17 | 3, 16 | wceq 1353 |
. . . . . . . . . 10
wff ๐ฅ = [โจ๐ค, ๐ฃโฉ]
~R |
18 | | vu |
. . . . . . . . . . . . . 14
setvar ๐ข |
19 | 18 | cv 1352 |
. . . . . . . . . . . . 13
class ๐ข |
20 | | vf |
. . . . . . . . . . . . . 14
setvar ๐ |
21 | 20 | cv 1352 |
. . . . . . . . . . . . 13
class ๐ |
22 | 19, 21 | cop 3596 |
. . . . . . . . . . . 12
class
โจ๐ข, ๐โฉ |
23 | 22, 15 | cec 6533 |
. . . . . . . . . . 11
class
[โจ๐ข, ๐โฉ]
~R |
24 | 7, 23 | wceq 1353 |
. . . . . . . . . 10
wff ๐ฆ = [โจ๐ข, ๐โฉ]
~R |
25 | 17, 24 | wa 104 |
. . . . . . . . 9
wff (๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R
) |
26 | | vz |
. . . . . . . . . . 11
setvar ๐ง |
27 | 26 | cv 1352 |
. . . . . . . . . 10
class ๐ง |
28 | | cmp 7293 |
. . . . . . . . . . . . . 14
class
ยทP |
29 | 11, 19, 28 | co 5875 |
. . . . . . . . . . . . 13
class (๐ค
ยทP ๐ข) |
30 | 13, 21, 28 | co 5875 |
. . . . . . . . . . . . 13
class (๐ฃ
ยทP ๐) |
31 | | cpp 7292 |
. . . . . . . . . . . . 13
class
+P |
32 | 29, 30, 31 | co 5875 |
. . . . . . . . . . . 12
class ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)) |
33 | 11, 21, 28 | co 5875 |
. . . . . . . . . . . . 13
class (๐ค
ยทP ๐) |
34 | 13, 19, 28 | co 5875 |
. . . . . . . . . . . . 13
class (๐ฃ
ยทP ๐ข) |
35 | 33, 34, 31 | co 5875 |
. . . . . . . . . . . 12
class ((๐ค
ยทP ๐) +P (๐ฃ
ยทP ๐ข)) |
36 | 32, 35 | cop 3596 |
. . . . . . . . . . 11
class
โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ |
37 | 36, 15 | cec 6533 |
. . . . . . . . . 10
class
[โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ]
~R |
38 | 27, 37 | wceq 1353 |
. . . . . . . . 9
wff ๐ง = [โจ((๐ค ยทP ๐ข) +P
(๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ]
~R |
39 | 25, 38 | wa 104 |
. . . . . . . 8
wff ((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
) |
40 | 39, 20 | wex 1492 |
. . . . . . 7
wff
โ๐((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
) |
41 | 40, 18 | wex 1492 |
. . . . . 6
wff
โ๐ขโ๐((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
) |
42 | 41, 12 | wex 1492 |
. . . . 5
wff
โ๐ฃโ๐ขโ๐((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
) |
43 | 42, 10 | wex 1492 |
. . . 4
wff
โ๐คโ๐ฃโ๐ขโ๐((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
) |
44 | 9, 43 | wa 104 |
. . 3
wff ((๐ฅ โ R โง
๐ฆ โ R)
โง โ๐คโ๐ฃโ๐ขโ๐((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
)) |
45 | 44, 2, 6, 26 | coprab 5876 |
. 2
class
{โจโจ๐ฅ,
๐ฆโฉ, ๐งโฉ โฃ ((๐ฅ โ R โง ๐ฆ โ R) โง
โ๐คโ๐ฃโ๐ขโ๐((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
))} |
46 | 1, 45 | wceq 1353 |
1
wff
ยทR = {โจโจ๐ฅ, ๐ฆโฉ, ๐งโฉ โฃ ((๐ฅ โ R โง ๐ฆ โ R) โง
โ๐คโ๐ฃโ๐ขโ๐((๐ฅ = [โจ๐ค, ๐ฃโฉ] ~R โง
๐ฆ = [โจ๐ข, ๐โฉ] ~R ) โง
๐ง = [โจ((๐ค
ยทP ๐ข) +P (๐ฃ
ยทP ๐)), ((๐ค ยทP ๐) +P
(๐ฃ
ยทP ๐ข))โฉ] ~R
))} |