Detailed syntax breakdown of Definition df-mr
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cmr 7369 | 
. 2
class 
·R | 
| 2 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 3 | 2 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 4 |   | cnr 7364 | 
. . . . . 6
class
R | 
| 5 | 3, 4 | wcel 2167 | 
. . . . 5
wff 𝑥 ∈
R | 
| 6 |   | vy | 
. . . . . . 7
setvar 𝑦 | 
| 7 | 6 | cv 1363 | 
. . . . . 6
class 𝑦 | 
| 8 | 7, 4 | wcel 2167 | 
. . . . 5
wff 𝑦 ∈
R | 
| 9 | 5, 8 | wa 104 | 
. . . 4
wff (𝑥 ∈ R ∧
𝑦 ∈
R) | 
| 10 |   | vw | 
. . . . . . . . . . . . . 14
setvar 𝑤 | 
| 11 | 10 | cv 1363 | 
. . . . . . . . . . . . 13
class 𝑤 | 
| 12 |   | vv | 
. . . . . . . . . . . . . 14
setvar 𝑣 | 
| 13 | 12 | cv 1363 | 
. . . . . . . . . . . . 13
class 𝑣 | 
| 14 | 11, 13 | cop 3625 | 
. . . . . . . . . . . 12
class
〈𝑤, 𝑣〉 | 
| 15 |   | cer 7363 | 
. . . . . . . . . . . 12
class 
~R | 
| 16 | 14, 15 | cec 6590 | 
. . . . . . . . . . 11
class
[〈𝑤, 𝑣〉]
~R | 
| 17 | 3, 16 | wceq 1364 | 
. . . . . . . . . 10
wff 𝑥 = [〈𝑤, 𝑣〉]
~R | 
| 18 |   | vu | 
. . . . . . . . . . . . . 14
setvar 𝑢 | 
| 19 | 18 | cv 1363 | 
. . . . . . . . . . . . 13
class 𝑢 | 
| 20 |   | vf | 
. . . . . . . . . . . . . 14
setvar 𝑓 | 
| 21 | 20 | cv 1363 | 
. . . . . . . . . . . . 13
class 𝑓 | 
| 22 | 19, 21 | cop 3625 | 
. . . . . . . . . . . 12
class
〈𝑢, 𝑓〉 | 
| 23 | 22, 15 | cec 6590 | 
. . . . . . . . . . 11
class
[〈𝑢, 𝑓〉]
~R | 
| 24 | 7, 23 | wceq 1364 | 
. . . . . . . . . 10
wff 𝑦 = [〈𝑢, 𝑓〉]
~R | 
| 25 | 17, 24 | wa 104 | 
. . . . . . . . 9
wff (𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R
) | 
| 26 |   | vz | 
. . . . . . . . . . 11
setvar 𝑧 | 
| 27 | 26 | cv 1363 | 
. . . . . . . . . 10
class 𝑧 | 
| 28 |   | cmp 7361 | 
. . . . . . . . . . . . . 14
class 
·P | 
| 29 | 11, 19, 28 | co 5922 | 
. . . . . . . . . . . . 13
class (𝑤
·P 𝑢) | 
| 30 | 13, 21, 28 | co 5922 | 
. . . . . . . . . . . . 13
class (𝑣
·P 𝑓) | 
| 31 |   | cpp 7360 | 
. . . . . . . . . . . . 13
class 
+P | 
| 32 | 29, 30, 31 | co 5922 | 
. . . . . . . . . . . 12
class ((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)) | 
| 33 | 11, 21, 28 | co 5922 | 
. . . . . . . . . . . . 13
class (𝑤
·P 𝑓) | 
| 34 | 13, 19, 28 | co 5922 | 
. . . . . . . . . . . . 13
class (𝑣
·P 𝑢) | 
| 35 | 33, 34, 31 | co 5922 | 
. . . . . . . . . . . 12
class ((𝑤
·P 𝑓) +P (𝑣
·P 𝑢)) | 
| 36 | 32, 35 | cop 3625 | 
. . . . . . . . . . 11
class
〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉 | 
| 37 | 36, 15 | cec 6590 | 
. . . . . . . . . 10
class
[〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉]
~R | 
| 38 | 27, 37 | wceq 1364 | 
. . . . . . . . 9
wff 𝑧 = [〈((𝑤 ·P 𝑢) +P
(𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉]
~R | 
| 39 | 25, 38 | wa 104 | 
. . . . . . . 8
wff ((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) | 
| 40 | 39, 20 | wex 1506 | 
. . . . . . 7
wff
∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) | 
| 41 | 40, 18 | wex 1506 | 
. . . . . 6
wff
∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) | 
| 42 | 41, 12 | wex 1506 | 
. . . . 5
wff
∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) | 
| 43 | 42, 10 | wex 1506 | 
. . . 4
wff
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
) | 
| 44 | 9, 43 | wa 104 | 
. . 3
wff ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
)) | 
| 45 | 44, 2, 6, 26 | coprab 5923 | 
. 2
class
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} | 
| 46 | 1, 45 | wceq 1364 | 
1
wff 
·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} |