Detailed syntax breakdown of Definition df-ltr
| Step | Hyp | Ref
| Expression |
| 1 | | cltr 7370 |
. 2
class
<R |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1363 |
. . . . . 6
class 𝑥 |
| 4 | | cnr 7364 |
. . . . . 6
class
R |
| 5 | 3, 4 | wcel 2167 |
. . . . 5
wff 𝑥 ∈
R |
| 6 | | vy |
. . . . . . 7
setvar 𝑦 |
| 7 | 6 | cv 1363 |
. . . . . 6
class 𝑦 |
| 8 | 7, 4 | wcel 2167 |
. . . . 5
wff 𝑦 ∈
R |
| 9 | 5, 8 | wa 104 |
. . . 4
wff (𝑥 ∈ R ∧
𝑦 ∈
R) |
| 10 | | vz |
. . . . . . . . . . . . . 14
setvar 𝑧 |
| 11 | 10 | cv 1363 |
. . . . . . . . . . . . 13
class 𝑧 |
| 12 | | vw |
. . . . . . . . . . . . . 14
setvar 𝑤 |
| 13 | 12 | cv 1363 |
. . . . . . . . . . . . 13
class 𝑤 |
| 14 | 11, 13 | cop 3625 |
. . . . . . . . . . . 12
class
〈𝑧, 𝑤〉 |
| 15 | | cer 7363 |
. . . . . . . . . . . 12
class
~R |
| 16 | 14, 15 | cec 6590 |
. . . . . . . . . . 11
class
[〈𝑧, 𝑤〉]
~R |
| 17 | 3, 16 | wceq 1364 |
. . . . . . . . . 10
wff 𝑥 = [〈𝑧, 𝑤〉]
~R |
| 18 | | vv |
. . . . . . . . . . . . . 14
setvar 𝑣 |
| 19 | 18 | cv 1363 |
. . . . . . . . . . . . 13
class 𝑣 |
| 20 | | vu |
. . . . . . . . . . . . . 14
setvar 𝑢 |
| 21 | 20 | cv 1363 |
. . . . . . . . . . . . 13
class 𝑢 |
| 22 | 19, 21 | cop 3625 |
. . . . . . . . . . . 12
class
〈𝑣, 𝑢〉 |
| 23 | 22, 15 | cec 6590 |
. . . . . . . . . . 11
class
[〈𝑣, 𝑢〉]
~R |
| 24 | 7, 23 | wceq 1364 |
. . . . . . . . . 10
wff 𝑦 = [〈𝑣, 𝑢〉]
~R |
| 25 | 17, 24 | wa 104 |
. . . . . . . . 9
wff (𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R
) |
| 26 | | cpp 7360 |
. . . . . . . . . . 11
class
+P |
| 27 | 11, 21, 26 | co 5922 |
. . . . . . . . . 10
class (𝑧 +P
𝑢) |
| 28 | 13, 19, 26 | co 5922 |
. . . . . . . . . 10
class (𝑤 +P
𝑣) |
| 29 | | cltp 7362 |
. . . . . . . . . 10
class
<P |
| 30 | 27, 28, 29 | wbr 4033 |
. . . . . . . . 9
wff (𝑧 +P
𝑢)<P (𝑤 +P
𝑣) |
| 31 | 25, 30 | wa 104 |
. . . . . . . 8
wff ((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) |
| 32 | 31, 20 | wex 1506 |
. . . . . . 7
wff
∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) |
| 33 | 32, 18 | wex 1506 |
. . . . . 6
wff
∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) |
| 34 | 33, 12 | wex 1506 |
. . . . 5
wff
∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) |
| 35 | 34, 10 | wex 1506 |
. . . 4
wff
∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) |
| 36 | 9, 35 | wa 104 |
. . 3
wff ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣))) |
| 37 | 36, 2, 6 | copab 4093 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |
| 38 | 1, 37 | wceq 1364 |
1
wff
<R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |