HomeHome Intuitionistic Logic Explorer
Theorem List (p. 78 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7701-7800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremm1p1sr 7701 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
(-1R +R 1R) = 0R
 
Theoremm1m1sr 7702 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
(-1R ·R -1R) = 1R
 
Theoremlttrsr 7703* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
 
Theoremltposr 7704 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
<R Po R
 
Theoremltsosr 7705 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
<R Or R
 
Theorem0lt1sr 7706 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
0R <R 1R
 
Theorem1ne0sr 7707 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
¬ 1R = 0R
 
Theorem0idsr 7708 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 +R 0R) = 𝐴)
 
Theorem1idsr 7709 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
(𝐴R → (𝐴 ·R 1R) = 𝐴)
 
Theorem00sr 7710 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 ·R 0R) = 0R)
 
Theoremltasrg 7711 Ordering property of addition. (Contributed by NM, 10-May-1996.)
((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
 
Theorempn0sr 7712 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
(𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
 
Theoremnegexsr 7713* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
(𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
 
Theoremrecexgt0sr 7714* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
(0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R))
 
Theoremrecexsrlem 7715* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
(0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
 
Theoremaddgt0sr 7716 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))
 
Theoremltadd1sr 7717 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴R𝐴 <R (𝐴 +R 1R))
 
Theoremltm1sr 7718 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
(𝐴R → (𝐴 +R -1R) <R 𝐴)
 
Theoremmulgt0sr 7719 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
 
Theoremaptisr 7720 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
 
Theoremmulextsr1lem 7721 Lemma for mulextsr1 7722. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
 
Theoremmulextsr1 7722 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
 
Theoremarchsr 7723* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
 
Theoremsrpospr 7724* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremprsrcl 7725 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → [⟨(𝐴 +P 1P), 1P⟩] ~RR)
 
Theoremprsrpos 7726 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → 0R <R [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
Theoremprsradd 7727 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrlt 7728 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrriota 7729* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremcaucvgsrlemcl 7730* Lemma for caucvgsr 7743. Terms of the sequence from caucvgsrlemgt1 7736 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
 
Theoremcaucvgsrlemasr 7731* Lemma for caucvgsr 7743. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
(𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑𝐴R)
 
Theoremcaucvgsrlemfv 7732* Lemma for caucvgsr 7743. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
 
Theoremcaucvgsrlemf 7733* Lemma for caucvgsr 7743. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑𝐺:NP)
 
Theoremcaucvgsrlemcau 7734* Lemma for caucvgsr 7743. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛)<P ((𝐺𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐺𝑘)<P ((𝐺𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
 
Theoremcaucvgsrlembound 7735* Lemma for caucvgsr 7743. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
 
Theoremcaucvgsrlemgt1 7736* Lemma for caucvgsr 7743. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
 
Theoremcaucvgsrlemoffval 7737* Lemma for caucvgsr 7743. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
 
Theoremcaucvgsrlemofff 7738* Lemma for caucvgsr 7743. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑𝐺:NR)
 
Theoremcaucvgsrlemoffcau 7739* Lemma for caucvgsr 7743. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
 
Theoremcaucvgsrlemoffgt1 7740* Lemma for caucvgsr 7743. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
 
Theoremcaucvgsrlemoffres 7741* Lemma for caucvgsr 7743. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsrlembnd 7742* Lemma for caucvgsr 7743. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsr 7743* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7653 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7742).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7738).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7653 to get a limit (see caucvgsrlemgt1 7736).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7736).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7741). (Contributed by Jim Kingdon, 20-Jun-2021.)

(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremltpsrprg 7744 Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
((𝐴P𝐵P𝐶R) → ((𝐶 +R [⟨𝐴, 1P⟩] ~R ) <R (𝐶 +R [⟨𝐵, 1P⟩] ~R ) ↔ 𝐴<P 𝐵))
 
Theoremmappsrprg 7745 Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
 
Theoremmap2psrprg 7746* Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
(𝐶R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
 
Theoremsuplocsrlemb 7747* Lemma for suplocsr 7750. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∀𝑢P𝑣P (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
 
Theoremsuplocsrlempr 7748* Lemma for suplocsr 7750. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
 
Theoremsuplocsrlem 7749* Lemma for suplocsr 7750. The set 𝐴 has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
 
Theoremsuplocsr 7750* An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
 
Syntaxcc 7751 Class of complex numbers.
class
 
Syntaxcr 7752 Class of real numbers.
class
 
Syntaxcc0 7753 Extend class notation to include the complex number 0.
class 0
 
Syntaxc1 7754 Extend class notation to include the complex number 1.
class 1
 
Syntaxci 7755 Extend class notation to include the complex number i.
class i
 
Syntaxcaddc 7756 Addition on complex numbers.
class +
 
Syntaxcltrr 7757 'Less than' predicate (defined over real subset of complex numbers).
class <
 
Syntaxcmul 7758 Multiplication on complex numbers. The token · is a center dot.
class ·
 
Definitiondf-c 7759 Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.)
ℂ = (R × R)
 
Definitiondf-0 7760 Define the complex number 0. (Contributed by NM, 22-Feb-1996.)
0 = ⟨0R, 0R
 
Definitiondf-1 7761 Define the complex number 1. (Contributed by NM, 22-Feb-1996.)
1 = ⟨1R, 0R
 
Definitiondf-i 7762 Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.)
i = ⟨0R, 1R
 
Definitiondf-r 7763 Define the set of real numbers. (Contributed by NM, 22-Feb-1996.)
ℝ = (R × {0R})
 
Definitiondf-add 7764* Define addition over complex numbers. (Contributed by NM, 28-May-1995.)
+ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
 
Definitiondf-mul 7765* Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.)
· = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
 
Definitiondf-lt 7766* Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
< = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
 
Theoremopelcn 7767 Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
(⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))
 
Theoremopelreal 7768 Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
(⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
 
Theoremelreal 7769* Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.)
(𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
 
Theoremelrealeu 7770* The real number mapping in elreal 7769 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
(𝐴 ∈ ℝ ↔ ∃!𝑥R𝑥, 0R⟩ = 𝐴)
 
Theoremelreal2 7771 Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
(𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
 
Theorem0ncn 7772 The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7773 which is a related property. (Contributed by NM, 2-May-1996.)
¬ ∅ ∈ ℂ
 
Theoremcnm 7773* A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
 
Theoremltrelre 7774 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
< ⊆ (ℝ × ℝ)
 
Theoremaddcnsr 7775 Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
(((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
 
Theoremmulcnsr 7776 Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
(((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
 
Theoremeqresr 7777 Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
𝐴 ∈ V       (⟨𝐴, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝐴 = 𝐵)
 
Theoremaddresr 7778 Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩)
 
Theoremmulresr 7779 Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)
 
Theoremltresr 7780 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
(⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)
 
Theoremltresr2 7781 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (1st𝐴) <R (1st𝐵)))
 
Theoremdfcnqs 7782 Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in from those in R. The trick involves qsid 6566, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that is a quotient set, even though it is not (compare df-c 7759), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
ℂ = ((R × R) / E )
 
Theoremaddcnsrec 7783 Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7782 and mulcnsrec 7784. (Contributed by NM, 13-Aug-1995.)
(((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )
 
Theoremmulcnsrec 7784 Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6565, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7782. (Contributed by NM, 13-Aug-1995.)
(((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )
 
Theoremaddvalex 7785 Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7878. (Contributed by Jim Kingdon, 14-Jul-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)
 
Theorempitonnlem1 7786* Lemma for pitonn 7789. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
 
Theorempitonnlem1p1 7787 Lemma for pitonn 7789. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴P → [⟨(𝐴 +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
Theorempitonnlem2 7788* Lemma for pitonn 7789. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
(𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theorempitonn 7789* Mapping from N to . (Contributed by Jim Kingdon, 22-Apr-2020.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
 
Theorempitoregt0 7790* Embedding from N to yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → 0 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theorempitore 7791* Embedding from N to . Similar to pitonn 7789 but separate in the sense that we have not proved nnssre 8861 yet. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
 
Theoremrecnnre 7792* Embedding the reciprocal of a natural number into . (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
 
Theorempeano1nnnn 7793* One is an element of . This is a counterpart to 1nn 8868 designed for real number axioms which involve natural numbers (notably, axcaucvg 7841). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       1 ∈ 𝑁
 
Theorempeano2nnnn 7794* A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8869 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7841). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       (𝐴𝑁 → (𝐴 + 1) ∈ 𝑁)
 
Theoremltrennb 7795* Ordering of natural numbers with <N or <. (Contributed by Jim Kingdon, 13-Jul-2021.)
((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
 
Theoremltrenn 7796* Ordering of natural numbers with <N or <. (Contributed by Jim Kingdon, 12-Jul-2021.)
(𝐽 <N 𝐾 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theoremrecidpipr 7797* Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
(𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
 
Theoremrecidpirqlemcalc 7798 Lemma for recidpirq 7799. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑 → (𝐴 ·P 𝐵) = 1P)       (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))
 
Theoremrecidpirq 7799* A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
 
4.1.2  Final derivation of real and complex number postulates
 
Theoremaxcnex 7800 The complex numbers form a set. Use cnex 7877 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
ℂ ∈ V
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13970
  Copyright terms: Public domain < Previous  Next >