| Intuitionistic Logic Explorer Theorem List (p. 78 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mulassprg 7701 | Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶))) | ||
| Theorem | distrlem1prl 7702 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | ||
| Theorem | distrlem1pru 7703 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | ||
| Theorem | distrlem4prl 7704* | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ ((𝑥 ∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) | ||
| Theorem | distrlem4pru 7705* | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ ((𝑥 ∈ (2nd ‘𝐴) ∧ 𝑦 ∈ (2nd ‘𝐵)) ∧ (𝑓 ∈ (2nd ‘𝐴) ∧ 𝑧 ∈ (2nd ‘𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) | ||
| Theorem | distrlem5prl 7706 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) | ||
| Theorem | distrlem5pru 7707 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) | ||
| Theorem | distrprg 7708 | Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) | ||
| Theorem | ltprordil 7709 | If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.) |
| ⊢ (𝐴<P 𝐵 → (1st ‘𝐴) ⊆ (1st ‘𝐵)) | ||
| Theorem | 1idprl 7710 | Lemma for 1idpr 7712. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| ⊢ (𝐴 ∈ P → (1st ‘(𝐴 ·P 1P)) = (1st ‘𝐴)) | ||
| Theorem | 1idpru 7711 | Lemma for 1idpr 7712. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| ⊢ (𝐴 ∈ P → (2nd ‘(𝐴 ·P 1P)) = (2nd ‘𝐴)) | ||
| Theorem | 1idpr 7712 | 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.) |
| ⊢ (𝐴 ∈ P → (𝐴 ·P 1P) = 𝐴) | ||
| Theorem | ltnqpr 7713* | We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 19-Jun-2021.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) | ||
| Theorem | ltnqpri 7714* | We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.) |
| ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) | ||
| Theorem | ltpopr 7715 | Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7716. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| ⊢ <P Po P | ||
| Theorem | ltsopr 7716 | Positive real 'less than' is a weak linear order (in the sense of df-iso 4348). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.) |
| ⊢ <P Or P | ||
| Theorem | ltaddpr 7717 | The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P (𝐴 +P 𝐵)) | ||
| Theorem | ltexprlemell 7718* | Element in lower cut of the constructed difference. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st ‘𝐵)))) | ||
| Theorem | ltexprlemelu 7719* | Element in upper cut of the constructed difference. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) | ||
| Theorem | ltexprlemm 7720* | Our constructed difference is inhabited. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐶) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐶))) | ||
| Theorem | ltexprlemopl 7721* | The lower cut of our constructed difference is open. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐶)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) | ||
| Theorem | ltexprlemlol 7722* | The lower cut of our constructed difference is lower. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)) → 𝑞 ∈ (1st ‘𝐶))) | ||
| Theorem | ltexprlemopu 7723* | The upper cut of our constructed difference is open. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q ∧ 𝑟 ∈ (2nd ‘𝐶)) → ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))) | ||
| Theorem | ltexprlemupu 7724* | The upper cut of our constructed difference is upper. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)) → 𝑟 ∈ (2nd ‘𝐶))) | ||
| Theorem | ltexprlemrnd 7725* | Our constructed difference is rounded. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))))) | ||
| Theorem | ltexprlemdisj 7726* | Our constructed difference is disjoint. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐶) ∧ 𝑞 ∈ (2nd ‘𝐶))) | ||
| Theorem | ltexprlemloc 7727* | Our constructed difference is located. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐶) ∨ 𝑟 ∈ (2nd ‘𝐶)))) | ||
| Theorem | ltexprlempr 7728* | Our constructed difference is a positive real. Lemma for ltexpri 7733. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → 𝐶 ∈ P) | ||
| Theorem | ltexprlemfl 7729* | Lemma for ltexpri 7733. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st ‘𝐵)) | ||
| Theorem | ltexprlemrl 7730* | Lemma for ltexpri 7733. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (1st ‘𝐵) ⊆ (1st ‘(𝐴 +P 𝐶))) | ||
| Theorem | ltexprlemfu 7731* | Lemma for ltexpri 7733. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd ‘𝐵)) | ||
| Theorem | ltexprlemru 7732* | Lemma for ltexpri 7733. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (2nd ‘𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶))) | ||
| Theorem | ltexpri 7733* | Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) |
| ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | ||
| Theorem | addcanprleml 7734 | Lemma for addcanprg 7736. (Contributed by Jim Kingdon, 25-Dec-2019.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐵) ⊆ (1st ‘𝐶)) | ||
| Theorem | addcanprlemu 7735 | Lemma for addcanprg 7736. (Contributed by Jim Kingdon, 25-Dec-2019.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐵) ⊆ (2nd ‘𝐶)) | ||
| Theorem | addcanprg 7736 | Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) | ||
| Theorem | lteupri 7737* | The difference from ltexpri 7733 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.) |
| ⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | ||
| Theorem | ltaprlem 7738 | Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) |
| ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) | ||
| Theorem | ltaprg 7739 | Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) | ||
| Theorem | prplnqu 7740* | Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ P) & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝐴 ∈ (2nd ‘(𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) | ||
| Theorem | addextpr 7741 | Strong extensionality of addition (ordering version). This is similar to addext 8690 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶 ∨ 𝐵<P 𝐷))) | ||
| Theorem | recexprlemell 7742* | Membership in the lower cut of 𝐵. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐶 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) | ||
| Theorem | recexprlemelu 7743* | Membership in the upper cut of 𝐵. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐶 ∈ (2nd ‘𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))) | ||
| Theorem | recexprlemm 7744* | 𝐵 is inhabited. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐵) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐵))) | ||
| Theorem | recexprlemopl 7745* | The lower cut of 𝐵 is open. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 28-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) | ||
| Theorem | recexprlemlol 7746* | The lower cut of 𝐵 is lower. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 28-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)) → 𝑞 ∈ (1st ‘𝐵))) | ||
| Theorem | recexprlemopu 7747* | The upper cut of 𝐵 is open. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 28-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q ∧ 𝑟 ∈ (2nd ‘𝐵)) → ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) | ||
| Theorem | recexprlemupu 7748* | The upper cut of 𝐵 is upper. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 28-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵))) | ||
| Theorem | recexprlemrnd 7749* | 𝐵 is rounded. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐵) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))))) | ||
| Theorem | recexprlemdisj 7750* | 𝐵 is disjoint. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐵) ∧ 𝑞 ∈ (2nd ‘𝐵))) | ||
| Theorem | recexprlemloc 7751* | 𝐵 is located. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵)))) | ||
| Theorem | recexprlempr 7752* | 𝐵 is a positive real. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → 𝐵 ∈ P) | ||
| Theorem | recexprlem1ssl 7753* | The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵))) | ||
| Theorem | recexprlem1ssu 7754* | The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵))) | ||
| Theorem | recexprlemss1l 7755* | The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P)) | ||
| Theorem | recexprlemss1u 7756* | The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P)) | ||
| Theorem | recexprlemex 7757* | 𝐵 is the reciprocal of 𝐴. Lemma for recexpr 7758. (Contributed by Jim Kingdon, 27-Dec-2019.) |
| ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (𝐴 ·P 𝐵) = 1P) | ||
| Theorem | recexpr 7758* | The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
| ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) | ||
| Theorem | aptiprleml 7759 | Lemma for aptipr 7761. (Contributed by Jim Kingdon, 28-Jan-2020.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (1st ‘𝐴) ⊆ (1st ‘𝐵)) | ||
| Theorem | aptiprlemu 7760 | Lemma for aptipr 7761. (Contributed by Jim Kingdon, 28-Jan-2020.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (2nd ‘𝐵) ⊆ (2nd ‘𝐴)) | ||
| Theorem | aptipr 7761 | Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 = 𝐵) | ||
| Theorem | ltmprr 7762 | Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵)) | ||
| Theorem | archpr 7763* | For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 7673. (Contributed by Jim Kingdon, 22-Apr-2020.) |
| ⊢ (𝐴 ∈ P → ∃𝑥 ∈ N 𝐴<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉) | ||
| Theorem | caucvgprlemcanl 7764* | Lemma for cauappcvgprlemladdrl 7777. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.) |
| ⊢ (𝜑 → 𝐿 ∈ P) & ⊢ (𝜑 → 𝑆 ∈ Q) & ⊢ (𝜑 → 𝑅 ∈ Q) & ⊢ (𝜑 → 𝑄 ∈ Q) ⇒ ⊢ (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}〉)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)))) | ||
| Theorem | cauappcvgprlemm 7765* | Lemma for cauappcvgpr 7782. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐿))) | ||
| Theorem | cauappcvgprlemopl 7766* | Lemma for cauappcvgpr 7782. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) | ||
| Theorem | cauappcvgprlemlol 7767* | Lemma for cauappcvgpr 7782. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | cauappcvgprlemopu 7768* | Lemma for cauappcvgpr 7782. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | cauappcvgprlemupu 7769* | Lemma for cauappcvgpr 7782. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) | ||
| Theorem | cauappcvgprlemrnd 7770* | Lemma for cauappcvgpr 7782. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | ||
| Theorem | cauappcvgprlemdisj 7771* | Lemma for cauappcvgpr 7782. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | cauappcvgprlemloc 7772* | Lemma for cauappcvgpr 7782. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) | ||
| Theorem | cauappcvgprlemcl 7773* | Lemma for cauappcvgpr 7782. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | cauappcvgprlemladdfu 7774* | Lemma for cauappcvgprlemladd 7778. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (2nd ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆ (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgprlemladdfl 7775* | Lemma for cauappcvgprlemladd 7778. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆ (1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgprlemladdru 7776* | Lemma for cauappcvgprlemladd 7778. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉) ⊆ (2nd ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | ||
| Theorem | cauappcvgprlemladdrl 7777* | Lemma for cauappcvgprlemladd 7778. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉) ⊆ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | ||
| Theorem | cauappcvgprlemladd 7778* | Lemma for cauappcvgpr 7782. This takes 𝐿 and offsets it by the positive fraction 𝑆. (Contributed by Jim Kingdon, 23-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉) | ||
| Theorem | cauappcvgprlem1 7779* | Lemma for cauappcvgpr 7782. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑅 ∈ Q) ⇒ ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑄)}, {𝑢 ∣ (𝐹‘𝑄) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgprlem2 7780* | Lemma for cauappcvgpr 7782. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑅 ∈ Q) ⇒ ⊢ (𝜑 → 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹‘𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}〉) | ||
| Theorem | cauappcvgprlemlim 7781* | Lemma for cauappcvgpr 7782. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}〉) ∧ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgpr 7782* |
A Cauchy approximation has a limit. A Cauchy approximation, here
𝐹, is similar to a Cauchy sequence but
is indexed by the desired
tolerance (that is, how close together terms needs to be) rather than
by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p.
(varies) with a few differences such as that we are proving the
existence of a limit without anything about how fast it converges
(that is, mere existence instead of existence, in HoTT terms), and
that the codomain of 𝐹 is Q rather than P. We also
specify that every term needs to be larger than a fraction 𝐴, to
avoid the case where we have positive terms which "converge"
to zero
(which is not a positive real).
This proof (including its lemmas) is similar to the proofs of caucvgpr 7802 and caucvgprpr 7832 but is somewhat simpler, so reading this one first may help understanding the other two. (Contributed by Jim Kingdon, 19-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑞 ∈ Q ∀𝑟 ∈ Q (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝑦 +P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}〉) ∧ 𝑦<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}〉)) | ||
| Theorem | archrecnq 7783* | Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴) | ||
| Theorem | archrecpr 7784* | Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) | ||
| Theorem | caucvgprlemk 7785 | Lemma for caucvgpr 7802. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.) |
| ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) ⇒ ⊢ (𝜑 → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑄) | ||
| Theorem | caucvgprlemnkj 7786* | Lemma for caucvgpr 7802. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → ¬ ((𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q (*Q‘[〈𝐽, 1o〉] ~Q )) <Q 𝑆)) | ||
| Theorem | caucvgprlemnbj 7787* | Lemma for caucvgpr 7802. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → 𝐵 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) ⇒ ⊢ (𝜑 → ¬ (((𝐹‘𝐵) +Q (*Q‘[〈𝐵, 1o〉] ~Q )) +Q (*Q‘[〈𝐽, 1o〉] ~Q )) <Q (𝐹‘𝐽)) | ||
| Theorem | caucvgprlemm 7788* | Lemma for caucvgpr 7802. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprlemopl 7789* | Lemma for caucvgpr 7802. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) | ||
| Theorem | caucvgprlemlol 7790* | Lemma for caucvgpr 7802. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | caucvgprlemopu 7791* | Lemma for caucvgpr 7802. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprlemupu 7792* | Lemma for caucvgpr 7802. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) | ||
| Theorem | caucvgprlemrnd 7793* | Lemma for caucvgpr 7802. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | ||
| Theorem | caucvgprlemdisj 7794* | Lemma for caucvgpr 7802. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprlemloc 7795* | Lemma for caucvgpr 7802. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) | ||
| Theorem | caucvgprlemcl 7796* | Lemma for caucvgpr 7802. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | caucvgprlemladdfu 7797* | Lemma for caucvgpr 7802. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (2nd ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) +Q 𝑆) <Q 𝑢}) | ||
| Theorem | caucvgprlemladdrl 7798* | Lemma for caucvgpr 7802. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q ((𝐹‘𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | ||
| Theorem | caucvgprlem1 7799* | Lemma for caucvgpr 7802. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) ⇒ ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) | ||
| Theorem | caucvgprlem2 7800* | Lemma for caucvgpr 7802. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) ⇒ ⊢ (𝜑 → 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q 𝑢}〉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |