![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ntr | GIF version |
Description: Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 13613. (Contributed by NM, 10-Sep-2006.) |
Ref | Expression |
---|---|
df-ntr | ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnt 13596 | . 2 class int | |
2 | vj | . . 3 setvar 𝑗 | |
3 | ctop 13500 | . . 3 class Top | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | 2 | cv 1352 | . . . . . 6 class 𝑗 |
6 | 5 | cuni 3810 | . . . . 5 class ∪ 𝑗 |
7 | 6 | cpw 3576 | . . . 4 class 𝒫 ∪ 𝑗 |
8 | 4 | cv 1352 | . . . . . . 7 class 𝑥 |
9 | 8 | cpw 3576 | . . . . . 6 class 𝒫 𝑥 |
10 | 5, 9 | cin 3129 | . . . . 5 class (𝑗 ∩ 𝒫 𝑥) |
11 | 10 | cuni 3810 | . . . 4 class ∪ (𝑗 ∩ 𝒫 𝑥) |
12 | 4, 7, 11 | cmpt 4065 | . . 3 class (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥)) |
13 | 2, 3, 12 | cmpt 4065 | . 2 class (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
14 | 1, 13 | wceq 1353 | 1 wff int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
Colors of variables: wff set class |
This definition is referenced by: ntrfval 13603 |
Copyright terms: Public domain | W3C validator |