Theorem List for Intuitionistic Logic Explorer - 13501-13600 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Syntax | csg 13501 |
Extend class notation with group subtraction (or division) operation.
|
| class -g |
| |
| Definition | df-grp 13502* |
Define class of all groups. A group is a monoid (df-mnd 13416) whose
internal operation is such that every element admits a left inverse
(which can be proven to be a two-sided inverse). Thus, a group 𝐺 is
an algebraic structure formed from a base set of elements (notated
(Base‘𝐺) per df-base 13004) and an internal group operation
(notated (+g‘𝐺) per df-plusg 13089). The operation combines any
two elements of the group base set and must satisfy the 4 group axioms:
closure (the result of the group operation must always be a member of
the base set, see grpcl 13507), associativity (so
((𝑎+g𝑏)+g𝑐) = (𝑎+g(𝑏+g𝑐)) for any a, b, c, see
grpass 13508), identity (there must be an element 𝑒 =
(0g‘𝐺) such
that 𝑒+g𝑎 = 𝑎+g𝑒 = 𝑎 for any a), and inverse (for each
element a
in the base set, there must be an element 𝑏 = invg𝑎 in the base set
such that 𝑎+g𝑏 = 𝑏+g𝑎 = 𝑒). It can be proven that the identity
element is unique (grpideu 13510). Groups need not be commutative; a
commutative group is an Abelian group. Subgroups can often be formed
from groups. An example of an (Abelian) group is the set of complex
numbers ℂ over the group operation + (addition). Other
structures include groups, including unital rings and fields.
(Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro,
6-Jan-2015.)
|
| ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} |
| |
| Definition | df-minusg 13503* |
Define inverse of group element. (Contributed by NM, 24-Aug-2011.)
|
| ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) |
| |
| Definition | df-sbg 13504* |
Define group subtraction (also called division for multiplicative
groups). (Contributed by NM, 31-Mar-2014.)
|
| ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) |
| |
| Theorem | isgrp 13505* |
The predicate "is a group". (This theorem demonstrates the use of
symbols as variable names, first proposed by FL in 2010.) (Contributed
by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| |
| Theorem | grpmnd 13506 |
A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| |
| Theorem | grpcl 13507 |
Closure of the operation of a group. (Contributed by NM,
14-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| |
| Theorem | grpass 13508 |
A group operation is associative. (Contributed by NM, 14-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| |
| Theorem | grpinvex 13509* |
Every member of a group has a left inverse. (Contributed by NM,
16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| |
| Theorem | grpideu 13510* |
The two-sided identity element of a group is unique. Lemma 2.2.1(a) of
[Herstein] p. 55. (Contributed by NM,
16-Aug-2011.) (Revised by Mario
Carneiro, 8-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)) |
| |
| Theorem | grpassd 13511 |
A group operation is associative. (Contributed by SN, 29-Jan-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| |
| Theorem | grpmndd 13512 |
A group is a monoid. (Contributed by SN, 1-Jun-2024.)
|
| ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| |
| Theorem | grpcld 13513 |
Closure of the operation of a group. (Contributed by SN,
29-Jul-2024.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| |
| Theorem | grpplusf 13514 |
The group addition operation is a function. (Contributed by Mario
Carneiro, 14-Aug-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝐹 = (+𝑓‘𝐺)
⇒ ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵) |
| |
| Theorem | grpplusfo 13515 |
The group addition operation is a function onto the base set/set of
group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV,
30-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝐹 = (+𝑓‘𝐺)
⇒ ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto→𝐵) |
| |
| Theorem | grppropd 13516* |
If two structures have the same group components (properties), one is a
group iff the other one is. (Contributed by Stefan O'Rear,
27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| |
| Theorem | grpprop 13517 |
If two structures have the same group components (properties), one is a
group iff the other one is. (Contributed by NM, 11-Oct-2013.)
|
| ⊢ (Base‘𝐾) = (Base‘𝐿)
& ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
| |
| Theorem | grppropstrg 13518 |
Generalize a specific 2-element group 𝐿 to show that any set 𝐾
with the same (relevant) properties is also a group. (Contributed by
NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ (Base‘𝐾) = 𝐵
& ⊢ (+g‘𝐾) = + & ⊢ 𝐿 = {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| |
| Theorem | isgrpd2e 13519* |
Deduce a group from its properties. In this version of isgrpd2 13520, we
don't assume there is an expression for the inverse of 𝑥.
(Contributed by NM, 10-Aug-2013.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 0 =
(0g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0
) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) |
| |
| Theorem | isgrpd2 13520* |
Deduce a group from its properties. 𝑁 (negative) is normally
dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we
don't use a 𝜑 antecedent on hypotheses that name
structure
components, since they can be eliminated with eqid 2209,
but we make an
exception for theorems such as isgrpd2 13520 and ismndd 13436 since theorems
using them often rewrite the structure components. (Contributed by NM,
10-Aug-2013.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 0 =
(0g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0
) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) |
| |
| Theorem | isgrpde 13521* |
Deduce a group from its properties. In this version of isgrpd 13522, we
don't assume there is an expression for the inverse of 𝑥.
(Contributed by NM, 6-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0
) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) |
| |
| Theorem | isgrpd 13522* |
Deduce a group from its properties. Unlike isgrpd2 13520, this one goes
straight from the base properties rather than going through Mnd.
𝑁 (negative) is normally dependent on
𝑥
i.e. read it as
𝑁(𝑥). (Contributed by NM, 6-Jun-2013.)
(Revised by Mario
Carneiro, 6-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0
) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) |
| |
| Theorem | isgrpi 13523* |
Properties that determine a group. 𝑁 (negative) is normally
dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM,
3-Sep-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
& ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ 0 ∈ 𝐵 & ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥)
& ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵)
& ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0
) ⇒ ⊢ 𝐺 ∈ Grp |
| |
| Theorem | grpsgrp 13524 |
A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
|
| ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
| |
| Theorem | grpmgmd 13525 |
A group is a magma, deduction form. (Contributed by SN,
14-Apr-2025.)
|
| ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| |
| Theorem | dfgrp2 13526* |
Alternate definition of a group as semigroup with a left identity and a
left inverse for each element. This "definition" is weaker
than
df-grp 13502, based on the definition of a monoid which
provides a left and
a right identity. (Contributed by AV, 28-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
| |
| Theorem | dfgrp2e 13527* |
Alternate definition of a group as a set with a closed, associative
operation, a left identity and a left inverse for each element.
Alternate definition in [Lang] p. 7.
(Contributed by NM, 10-Oct-2006.)
(Revised by AV, 28-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
| |
| Theorem | grpidcl 13528 |
The identity element of a group belongs to the group. (Contributed by
NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| |
| Theorem | grpbn0 13529 |
The base set of a group is not empty. It is also inhabited (see
grpidcl 13528). (Contributed by Szymon Jaroszewicz,
3-Apr-2007.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| |
| Theorem | grplid 13530 |
The identity element of a group is a left identity. (Contributed by NM,
18-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| |
| Theorem | grprid 13531 |
The identity element of a group is a right identity. (Contributed by
NM, 18-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| |
| Theorem | grplidd 13532 |
The identity element of a group is a left identity. Deduction
associated with grplid 13530. (Contributed by SN, 29-Jan-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
| |
| Theorem | grpridd 13533 |
The identity element of a group is a right identity. Deduction
associated with grprid 13531. (Contributed by SN, 29-Jan-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) |
| |
| Theorem | grpn0 13534 |
A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
(Revised by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) |
| |
| Theorem | hashfingrpnn 13535 |
A finite group has positive integer size. (Contributed by Rohan
Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
| |
| Theorem | grprcan 13536 |
Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.)
(Proof shortened by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | grpinveu 13537* |
The left inverse element of a group is unique. Lemma 2.2.1(b) of
[Herstein] p. 55. (Contributed by NM,
24-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| |
| Theorem | grpid 13538 |
Two ways of saying that an element of a group is the identity element.
Provides a convenient way to compute the value of the identity element.
(Contributed by NM, 24-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| |
| Theorem | isgrpid2 13539 |
Properties showing that an element 𝑍 is the identity element of a
group. (Contributed by NM, 7-Aug-2013.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
| |
| Theorem | grpidd2 13540* |
Deduce the identity element of a group from its properties. Useful in
conjunction with isgrpd 13522. (Contributed by Mario Carneiro,
14-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 0 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥)
& ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 0 =
(0g‘𝐺)) |
| |
| Theorem | grpinvfvalg 13541* |
The inverse function of a group. (Contributed by NM, 24-Aug-2011.)
(Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour,
13-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| |
| Theorem | grpinvval 13542* |
The inverse of a group element. (Contributed by NM, 24-Aug-2011.)
(Revised by Mario Carneiro, 7-Aug-2013.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| |
| Theorem | grpinvfng 13543 |
Functionality of the group inverse function. (Contributed by Stefan
O'Rear, 21-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
| |
| Theorem | grpsubfvalg 13544* |
Group subtraction (division) operation. (Contributed by NM,
31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof
shortened by AV, 19-Feb-2024.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| |
| Theorem | grpsubval 13545 |
Group subtraction (division) operation. (Contributed by NM,
31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| |
| Theorem | grpinvf 13546 |
The group inversion operation is a function on the base set.
(Contributed by Mario Carneiro, 4-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| |
| Theorem | grpinvcl 13547 |
A group element's inverse is a group element. (Contributed by NM,
24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| |
| Theorem | grpinvcld 13548 |
A group element's inverse is a group element. (Contributed by SN,
29-Jan-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| |
| Theorem | grplinv 13549 |
The left inverse of a group element. (Contributed by NM, 24-Aug-2011.)
(Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| |
| Theorem | grprinv 13550 |
The right inverse of a group element. (Contributed by NM, 24-Aug-2011.)
(Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| |
| Theorem | grpinvid1 13551 |
The inverse of a group element expressed in terms of the identity
element. (Contributed by NM, 24-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
| |
| Theorem | grpinvid2 13552 |
The inverse of a group element expressed in terms of the identity
element. (Contributed by NM, 24-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 )) |
| |
| Theorem | isgrpinv 13553* |
Properties showing that a function 𝑀 is the inverse function of a
group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro,
2-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ((𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀)) |
| |
| Theorem | grplinvd 13554 |
The left inverse of a group element. Deduction associated with
grplinv 13549. (Contributed by SN, 29-Jan-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| |
| Theorem | grprinvd 13555 |
The right inverse of a group element. Deduction associated with
grprinv 13550. (Contributed by SN, 29-Jan-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| |
| Theorem | grplrinv 13556* |
In a group, every member has a left and right inverse. (Contributed by
AV, 1-Sep-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| |
| Theorem | grpidinv2 13557* |
A group's properties using the explicit identity element. (Contributed
by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| |
| Theorem | grpidinv 13558* |
A group has a left and right identity element, and every member has a
left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by
AV, 1-Sep-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢))) |
| |
| Theorem | grpinvid 13559 |
The inverse of the identity element of a group. (Contributed by NM,
24-Aug-2011.)
|
| ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| |
| Theorem | grpressid 13560 |
A group restricted to its base set is a group. It will usually be the
original group exactly, of course, but to show that needs additional
conditions such as those in strressid 13070. (Contributed by Jim Kingdon,
28-Feb-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| |
| Theorem | grplcan 13561 |
Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | grpasscan1 13562 |
An associative cancellation law for groups. (Contributed by Paul
Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
| |
| Theorem | grpasscan2 13563 |
An associative cancellation law for groups. (Contributed by Paul
Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) |
| |
| Theorem | grpidrcan 13564 |
If right adding an element of a group to an arbitrary element of the
group results in this element, the added element is the identity element
and vice versa. (Contributed by AV, 15-Mar-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = 𝑋 ↔ 𝑍 = 0 )) |
| |
| Theorem | grpidlcan 13565 |
If left adding an element of a group to an arbitrary element of the
group results in this element, the added element is the identity element
and vice versa. (Contributed by AV, 15-Mar-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = 𝑋 ↔ 𝑍 = 0 )) |
| |
| Theorem | grpinvinv 13566 |
Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55.
(Contributed by NM, 31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| |
| Theorem | grpinvcnv 13567 |
The group inverse is its own inverse function. (Contributed by Mario
Carneiro, 14-Aug-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| |
| Theorem | grpinv11 13568 |
The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | grpinvf1o 13569 |
The group inverse is a one-to-one onto function. (Contributed by NM,
22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
| |
| Theorem | grpinvnz 13570 |
The inverse of a nonzero group element is not zero. (Contributed by
Stefan O'Rear, 27-Feb-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
| |
| Theorem | grpinvnzcl 13571 |
The inverse of a nonzero group element is a nonzero group element.
(Contributed by Stefan O'Rear, 27-Feb-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
| |
| Theorem | grpsubinv 13572 |
Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + 𝑌)) |
| |
| Theorem | grplmulf1o 13573* |
Left multiplication by a group element is a bijection on any group.
(Contributed by Mario Carneiro, 17-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑋 + 𝑥)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐹:𝐵–1-1-onto→𝐵) |
| |
| Theorem | grpinvpropdg 13574* |
If two structures have the same group components (properties), they have
the same group inversion function. (Contributed by Mario Carneiro,
27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉)
& ⊢ (𝜑 → 𝐿 ∈ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (invg‘𝐾) =
(invg‘𝐿)) |
| |
| Theorem | grpidssd 13575* |
If the base set of a group is contained in the base set of another
group, and the group operation of the group is the restriction of the
group operation of the other group to its base set, then both groups
have the same identity element. (Contributed by AV, 15-Mar-2019.)
|
| ⊢ (𝜑 → 𝑀 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
| |
| Theorem | grpinvssd 13576* |
If the base set of a group is contained in the base set of another
group, and the group operation of the group is the restriction of the
group operation of the other group to its base set, then the elements of
the first group have the same inverses in both groups. (Contributed by
AV, 15-Mar-2019.)
|
| ⊢ (𝜑 → 𝑀 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 → ((invg‘𝑆)‘𝑋) = ((invg‘𝑀)‘𝑋))) |
| |
| Theorem | grpinvadd 13577 |
The inverse of the group operation reverses the arguments. Lemma
2.2.1(d) of [Herstein] p. 55.
(Contributed by NM, 27-Oct-2006.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
| |
| Theorem | grpsubf 13578 |
Functionality of group subtraction. (Contributed by Mario Carneiro,
9-Sep-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| |
| Theorem | grpsubcl 13579 |
Closure of group subtraction. (Contributed by NM, 31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| |
| Theorem | grpsubrcan 13580 |
Right cancellation law for group subtraction. (Contributed by NM,
31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | grpinvsub 13581 |
Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
| |
| Theorem | grpinvval2 13582 |
A df-neg 8288-like equation for inverse in terms of group
subtraction.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) |
| |
| Theorem | grpsubid 13583 |
Subtraction of a group element from itself. (Contributed by NM,
31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
| |
| Theorem | grpsubid1 13584 |
Subtraction of the identity from a group element. (Contributed by Mario
Carneiro, 14-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
| |
| Theorem | grpsubeq0 13585 |
If the difference between two group elements is zero, they are equal.
(subeq0 8340 analog.) (Contributed by NM, 31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| |
| Theorem | grpsubadd0sub 13586 |
Subtraction expressed as addition of the difference of the identity
element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) |
| |
| Theorem | grpsubadd 13587 |
Relationship between group subtraction and addition. (Contributed by
NM, 31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋)) |
| |
| Theorem | grpsubsub 13588 |
Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised
by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) |
| |
| Theorem | grpaddsubass 13589 |
Associative-type law for group subtraction and addition. (Contributed
by NM, 16-Apr-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) |
| |
| Theorem | grppncan 13590 |
Cancellation law for subtraction (pncan 8320 analog). (Contributed by NM,
16-Apr-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| |
| Theorem | grpnpcan 13591 |
Cancellation law for subtraction (npcan 8323 analog). (Contributed by NM,
19-Apr-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
| |
| Theorem | grpsubsub4 13592 |
Double group subtraction (subsub4 8347 analog). (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑍 + 𝑌))) |
| |
| Theorem | grppnpcan2 13593 |
Cancellation law for mixed addition and subtraction. (pnpcan2 8354
analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro,
2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) − (𝑌 + 𝑍)) = (𝑋 − 𝑌)) |
| |
| Theorem | grpnpncan 13594 |
Cancellation law for group subtraction. (npncan 8335 analog.)
(Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro,
2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) + (𝑌 − 𝑍)) = (𝑋 − 𝑍)) |
| |
| Theorem | grpnpncan0 13595 |
Cancellation law for group subtraction (npncan2 8341 analog).
(Contributed by AV, 24-Nov-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 − 𝑌) + (𝑌 − 𝑋)) = 0 ) |
| |
| Theorem | grpnnncan2 13596 |
Cancellation law for group subtraction. (nnncan2 8351 analog.)
(Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro,
2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) − (𝑌 − 𝑍)) = (𝑋 − 𝑌)) |
| |
| Theorem | dfgrp3mlem 13597* |
Lemma for dfgrp3m 13598. (Contributed by AV, 28-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
| |
| Theorem | dfgrp3m 13598* |
Alternate definition of a group as semigroup (with at least one element)
which is also a quasigroup, i.e. a magma in which solutions 𝑥 and
𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist.
Theorem 3.2 of [Bruck] p. 28.
(Contributed by AV, 28-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) |
| |
| Theorem | dfgrp3me 13599* |
Alternate definition of a group as a set with a closed, associative
operation, for which solutions 𝑥 and 𝑦 of the equations
(𝑎
+ 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Exercise 1 of
[Herstein] p. 57. (Contributed by NM,
5-Dec-2006.) (Revised by AV,
28-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ∧ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)))) |
| |
| Theorem | grplactfval 13600* |
The left group action of element 𝐴 of group 𝐺. (Contributed by
Paul Chapman, 18-Mar-2008.)
|
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺)
⇒ ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |