HomeHome Intuitionistic Logic Explorer
Theorem List (p. 136 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13501-13600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiscmn 13501* The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
 
Theoremisabl2 13502* The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
 
Theoremcmnpropd 13503* If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
 
Theoremablpropd 13504* If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
 
Theoremablprop 13505 If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)
 
Theoremiscmnd 13506* Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑𝐺 ∈ Mnd)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       (𝜑𝐺 ∈ CMnd)
 
Theoremisabld 13507* Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑𝐺 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       (𝜑𝐺 ∈ Abel)
 
Theoremisabli 13508* Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
𝐺 ∈ Grp    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       𝐺 ∈ Abel
 
Theoremcmnmnd 13509 A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
 
Theoremcmncom 13510 A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremablcom 13511 An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremcmn32 13512 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremcmn4 13513 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 
Theoremcmn12 13514 Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
 
Theoremabl32 13515 Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremcmnmndd 13516 A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝐺 ∈ CMnd)       (𝜑𝐺 ∈ Mnd)
 
Theoremrinvmod 13517* Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6121. (Contributed by AV, 31-Dec-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐴𝐵)       (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
 
Theoremablinvadd 13518 The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))
 
Theoremablsub2inv 13519 Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))
 
Theoremablsubadd 13520 Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋))
 
Theoremablsub4 13521 Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))
 
Theoremabladdsub4 13522 Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 𝑍) = (𝑊 𝑌)))
 
Theoremabladdsub 13523 Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))
 
Theoremablpncan2 13524 Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)
 
Theoremablpncan3 13525 A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = 𝑌)
 
Theoremablsubsub 13526 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))
 
Theoremablsubsub4 13527 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
 
Theoremablpnpcan 13528 Cancellation law for mixed addition and subtraction. (pnpcan 8284 analog.) (Contributed by NM, 29-May-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 + 𝑌) (𝑋 + 𝑍)) = (𝑌 𝑍))
 
Theoremablnncan 13529 Cancellation law for group subtraction. (nncan 8274 analog.) (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)
 
Theoremablsub32 13530 Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑍) 𝑌))
 
Theoremablnnncan 13531 Cancellation law for group subtraction. (nnncan 8280 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))
 
Theoremablnnncan1 13532 Cancellation law for group subtraction. (nnncan1 8281 analog.) (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
 
Theoremablsubsub23 13533 Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))
 
Theoremghmfghm 13534* The function fulfilling the conditions of ghmgrp 13326 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Grp)       (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
 
Theoremghmcmn 13535* The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ CMnd)       (𝜑𝐻 ∈ CMnd)
 
Theoremghmabl 13536* The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Abel)       (𝜑𝐻 ∈ Abel)
 
Theoreminvghm 13537 The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝐺)    &   𝐼 = (invg𝐺)       (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
 
Theoremeqgabl 13538 Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &    = (-g𝐺)    &    = (𝐺 ~QG 𝑆)       ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
 
Theoremqusecsub 13539 Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &    = (𝐺 ~QG 𝑆)       (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] = [𝑌] ↔ (𝑌 𝑋) ∈ 𝑆))
 
Theoremsubgabl 13540 A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
𝐻 = (𝐺s 𝑆)       ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
 
Theoremsubcmnd 13541 A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
(𝜑𝐻 = (𝐺s 𝑆))    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑆𝑉)       (𝜑𝐻 ∈ CMnd)
 
Theoremablnsg 13542 Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
 
Theoremablressid 13543 A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12776. (Contributed by Jim Kingdon, 5-May-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)
 
Theoremimasabl 13544* The image structure of an abelian group is an abelian group (imasgrp 13319 analog). (Contributed by AV, 22-Feb-2025.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅 ∈ Abel)    &    0 = (0g𝑅)       (𝜑 → (𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)))
 
7.2.5.2  Group sum operation
 
Theoremgsumfzreidx 13545 Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with 𝑀 = 1. (Contributed by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)    &   (𝜑𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))       (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
 
Theoremgsumfzsubmcl 13546 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
(𝜑𝐺 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝑆)       (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)
 
Theoremgsumfzmptfidmadd 13547* The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)    &   𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)    &   𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)       (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
 
Theoremgsumfzmptfidmadd2 13548* The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)    &   𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)    &   𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)       (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
 
Theoremgsumfzconst 13549* Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
 
Theoremgsumfzconstf 13550* Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.)
𝑘𝑋    &   𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
 
Theoremgsumfzmhm 13551 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
 
Theoremgsumfzmhm2 13552* Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑋𝐵)    &   (𝑥 = 𝑋𝐶 = 𝐷)    &   (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸)       (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸)
 
Theoremgsumfzsnfd 13553* Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)    &   𝑘𝜑    &   𝑘𝐶       (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
 
7.3  Rings
 
7.3.1  Multiplicative Group
 
Syntaxcmgp 13554 Multiplicative group.
class mulGrp
 
Definitiondf-mgp 13555 Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" or "the multiplicative identity" in terms of the identity of a monoid (df-ur 13594). (Contributed by Mario Carneiro, 21-Dec-2014.)
mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
 
Theoremfnmgp 13556 The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
mulGrp Fn V
 
Theoremmgpvalg 13557 Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)       (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
 
Theoremmgpplusgg 13558 Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)       (𝑅𝑉· = (+g𝑀))
 
Theoremmgpex 13559 Existence of the multiplication group. If 𝑅 is known to be a semiring, see srgmgp 13602. (Contributed by Jim Kingdon, 10-Jan-2025.)
𝑀 = (mulGrp‘𝑅)       (𝑅𝑉𝑀 ∈ V)
 
Theoremmgpbasg 13560 Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅𝑉𝐵 = (Base‘𝑀))
 
Theoremmgpscag 13561 The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑆 = (Scalar‘𝑅)       (𝑅𝑉𝑆 = (Scalar‘𝑀))
 
Theoremmgptsetg 13562 Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)       (𝑅𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀))
 
Theoremmgptopng 13563 Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐽 = (TopOpen‘𝑅)       (𝑅𝑉𝐽 = (TopOpen‘𝑀))
 
Theoremmgpdsg 13564 Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (dist‘𝑅)       (𝑅𝑉𝐵 = (dist‘𝑀))
 
Theoremmgpress 13565 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
𝑆 = (𝑅s 𝐴)    &   𝑀 = (mulGrp‘𝑅)       ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
 
7.3.2  Non-unital rings ("rngs")

According to Wikipedia, "... in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 28-Mar-2025).

 
Syntaxcrng 13566 Extend class notation with class of all non-unital rings.
class Rng
 
Definitiondf-rng 13567* Define the class of all non-unital rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.)
Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
 
Theoremisrng 13568* The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
 
Theoremrngabl 13569 A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
(𝑅 ∈ Rng → 𝑅 ∈ Abel)
 
Theoremrngmgp 13570 A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ Rng → 𝐺 ∈ Smgrp)
 
Theoremrngmgpf 13571 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13645 analog). (Contributed by AV, 22-Feb-2025.)
(mulGrp ↾ Rng):Rng⟶Smgrp
 
Theoremrnggrp 13572 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
(𝑅 ∈ Rng → 𝑅 ∈ Grp)
 
Theoremrngass 13573 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremrngdi 13574 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
 
Theoremrngdir 13575 Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
 
Theoremrngacl 13576 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremrng0cl 13577 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Rng → 0𝐵)
 
Theoremrngcl 13578 Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremrnglz 13579 The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13677. (Revised by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremrngrz 13580 The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13678. (Revised by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremrngmneg1 13581 Negation of a product in a non-unital ring (mulneg1 8440 analog). In contrast to ringmneg1 13687, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremrngmneg2 13582 Negation of a product in a non-unital ring (mulneg2 8441 analog). In contrast to ringmneg2 13688, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremrngm2neg 13583 Double negation of a product in a non-unital ring (mul2neg 8443 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13689. (Revised by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = (𝑋 · 𝑌))
 
Theoremrngansg 13584 Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
(𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
 
Theoremrngsubdi 13585 Ring multiplication distributes over subtraction. (subdi 8430 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13690. (Revised by AV, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
 
Theoremrngsubdir 13586 Ring multiplication distributes over subtraction. (subdir 8431 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13691. (Revised by AV, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
 
Theoremisrngd 13587* Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Abel)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))       (𝜑𝑅 ∈ Rng)
 
Theoremrngressid 13588 A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12776. (Contributed by Jim Kingdon, 5-May-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)
 
Theoremrngpropd 13589* If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
 
Theoremimasrng 13590* The image structure of a non-unital ring is a non-unital ring (imasring 13698 analog). (Contributed by AV, 22-Feb-2025.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑𝑅 ∈ Rng)       (𝜑𝑈 ∈ Rng)
 
Theoremimasrngf1 13591 The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Rng) → 𝑈 ∈ Rng)
 
Theoremqusrng 13592* The quotient structure of a non-unital ring is a non-unital ring (qusring2 13700 analog). (Contributed by AV, 23-Feb-2025.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑 Er 𝑉)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   (𝜑𝑅 ∈ Rng)       (𝜑𝑈 ∈ Rng)
 
7.3.3  Ring unity (multiplicative identity)

In Wikipedia "Identity element", see https://en.wikipedia.org/wiki/Identity_element (18-Jan-2025): "... an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). ... The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit."

Calling the multiplicative identity of a ring a unity is taken from the definition of a ring with unity in section 17.3 of [BeauregardFraleigh] p. 135, "A ring ( R , + , . ) is a ring with unity if R is not the zero ring and ( R , . ) is a monoid. In this case, the identity element of ( R , . ) is denoted by 1 and is called the unity of R." This definition of a "ring with unity" corresponds to our definition of a unital ring (see df-ring 13632).

Some authors call the multiplicative identity "unit" or "unit element" (for example in section I, 2.2 of [BourbakiAlg1] p. 14, definition in section 1.3 of [Hall] p. 4, or in section I, 1 of [Lang] p. 3), whereas other authors use the term "unit" for an element having a multiplicative inverse (for example in section 17.3 of [BeauregardFraleigh] p. 135, in definition in [Roman] p. 26, or even in section II, 1 of [Lang] p. 84). Sometimes, the multiplicative identity is simply called "one" (see, for example, chapter 8 in [Schechter] p. 180).

To avoid this ambiguity of the term "unit", also mentioned in Wikipedia, we call the multiplicative identity of a structure with a multiplication (usually a ring) a "ring unity", or straightly "multiplicative identity".

The term "unit" will be used for an element having a multiplicative inverse (see https://us.metamath.org/mpeuni/df-unit.html 13632 in set.mm), and we have "the ring unity is a unit", see https://us.metamath.org/mpeuni/1unit.html 13632.

 
Syntaxcur 13593 Extend class notation with ring unity.
class 1r
 
Definitiondf-ur 13594 Define the multiplicative identity, i.e., the monoid identity (df-0g 12962) of the multiplicative monoid (df-mgp 13555) of a ring-like structure. This multiplicative identity is also called "ring unity" or "unity element".

This definition works by transferring the multiplicative operation from the .r slot to the +g slot and then looking at the element which is then the 0g element, that is an identity with respect to the operation which started out in the .r slot.

See also dfur2g 13596, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)

1r = (0g ∘ mulGrp)
 
Theoremringidvalg 13595 The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐺 = (mulGrp‘𝑅)    &    1 = (1r𝑅)       (𝑅𝑉1 = (0g𝐺))
 
Theoremdfur2g 13596* The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       (𝑅𝑉1 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))))
 
7.3.4  Semirings
 
Syntaxcsrg 13597 Extend class notation with the class of all semirings.
class SRing
 
Definitiondf-srg 13598* Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡][(0g𝑓) / 𝑛]𝑥𝑟 (∀𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
 
Theoremissrg 13599* The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
 
Theoremsrgcmn 13600 A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing → 𝑅 ∈ CMnd)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15819
  Copyright terms: Public domain < Previous  Next >