HomeHome Intuitionistic Logic Explorer
Theorem List (p. 136 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13501-13600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
10.1.4  Logarithms to an arbitrary base

Define "log using an arbitrary base" function and then prove some of its properties. As with df-relog 13419 this is for real logarithms rather than complex logarithms.

Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log".

There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations): (𝐵 logb 𝑋) where 𝐵 is the base and 𝑋 is the argument of the logarithm function. An alternative would be to support the notational form (( logb𝐵)‘𝑋); that looks a little more like traditional notation.

 
Syntaxclogb 13501 Extend class notation to include the logarithm generalized to an arbitrary base.
class logb
 
Definitiondf-logb 13502* Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where 𝑥 is a positive real apart from one and where 𝑦 is a positive real, so the choice of (ℂ ∖ {0, 1}) and (ℂ ∖ {0}) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.)
logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
 
Theoremrplogbval 13503 Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 
Theoremrplogbcl 13504 General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
 
Theoremrplogbid1 13505 General logarithm is 1 when base and arg match. Property 1(a) of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by David A. Wheeler, 22-Jul-2017.)
((𝐴 ∈ ℝ+𝐴 # 1) → (𝐴 logb 𝐴) = 1)
 
Theoremrplogb1 13506 The logarithm of 1 to an arbitrary base 𝐵 is 0. Property 1(b) of [Cohen4] p. 361. See log1 13427. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ ℝ+𝐵 # 1) → (𝐵 logb 1) = 0)
 
Theoremrpelogb 13507 The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using e as the base in logb is the same as log. Definition in [Cohen4] p. 352. (Contributed by David A. Wheeler, 17-Oct-2017.) (Revised by David A. Wheeler and AV, 16-Jun-2020.)
(𝐴 ∈ ℝ+ → (e logb 𝐴) = (log‘𝐴))
 
Theoremrplogbchbase 13508 Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.)
(((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((𝐵 logb 𝑋) / (𝐵 logb 𝐴)))
 
Theoremrelogbval 13509 Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 
Theoremrelogbzcl 13510 Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017.) (Proof shortened by AV, 9-Jun-2020.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
 
Theoremrplogbreexp 13511 Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))
 
Theoremrplogbzexp 13512 Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝐶 ∈ ℝ+𝑁 ∈ ℤ) → (𝐵 logb (𝐶𝑁)) = (𝑁 · (𝐵 logb 𝐶)))
 
Theoremrprelogbmul 13513 The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)))
 
Theoremrprelogbmulexp 13514 The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+𝐸 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶𝑐𝐸))) = ((𝐵 logb 𝐴) + (𝐸 · (𝐵 logb 𝐶))))
 
Theoremrprelogbdiv 13515 The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))
 
Theoremrelogbexpap 13516 Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵𝑀)) = 𝑀)
 
Theoremnnlogbexp 13517 Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵𝑀)) = 𝑀)
 
Theoremlogbrec 13518 Logarithm of a reciprocal changes sign. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴))
 
Theoremlogbleb 13519 The general logarithm function is monotone/increasing. See logleb 13436. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌)))
 
Theoremlogblt 13520 The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 13435. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌)))
 
Theoremrplogbcxp 13521 Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ) → (𝐵 logb (𝐵𝑐𝑋)) = 𝑋)
 
Theoremrpcxplogb 13522 Identity law for the general logarithm. (Contributed by AV, 22-May-2020.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
 
Theoremrelogbcxpbap 13523 The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵𝑐𝑌) = 𝑋))
 
Theoremlogbgt0b 13524 The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.)
((𝐴 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝐴) ↔ 1 < 𝐴))
 
Theoremlogbgcd1irr 13525 The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ). (Contributed by AV, 29-Dec-2022.)
((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
 
Theoremlogbgcd1irraplemexp 13526 Lemma for logbgcd1irrap 13528. Apartness of 𝑋𝑁 and 𝐵𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.)
(𝜑𝑋 ∈ (ℤ‘2))    &   (𝜑𝐵 ∈ (ℤ‘2))    &   (𝜑 → (𝑋 gcd 𝐵) = 1)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑋𝑁) # (𝐵𝑀))
 
Theoremlogbgcd1irraplemap 13527 Lemma for logbgcd1irrap 13528. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
(𝜑𝑋 ∈ (ℤ‘2))    &   (𝜑𝐵 ∈ (ℤ‘2))    &   (𝜑 → (𝑋 gcd 𝐵) = 1)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))
 
Theoremlogbgcd1irrap 13528 The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.)
(((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄)
 
Theorem2logb9irr 13529 Example for logbgcd1irr 13525. The logarithm of nine to base two is not rational. Also see 2logb9irrap 13535 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.)
(2 logb 9) ∈ (ℝ ∖ ℚ)
 
Theoremlogbprmirr 13530 The logarithm of a prime to a different prime base is not rational. For example, (2 logb 3) ∈ (ℝ ∖ ℚ) (see 2logb3irr 13531). (Contributed by AV, 31-Dec-2022.)
((𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋𝐵) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
 
Theorem2logb3irr 13531 Example for logbprmirr 13530. The logarithm of three to base two is not rational. (Contributed by AV, 31-Dec-2022.)
(2 logb 3) ∈ (ℝ ∖ ℚ)
 
Theorem2logb9irrALT 13532 Alternate proof of 2logb9irr 13529: The logarithm of nine to base two is not rational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(2 logb 9) ∈ (ℝ ∖ ℚ)
 
Theoremsqrt2cxp2logb9e3 13533 The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12096 resp. 2logb9irr 13529), satisfying the statement in 2irrexpq 13534. (Contributed by AV, 29-Dec-2022.)
((√‘2)↑𝑐(2 logb 9)) = 3
 
Theorem2irrexpq 13534* There exist real numbers 𝑎 and 𝑏 which are not rational such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named non-rational numbers (√‘2) and (2 logb 9), see sqrt2irr0 12096, 2logb9irr 13529 and sqrt2cxp2logb9e3 13533. Therefore, this proof is acceptable/usable in intuitionistic logic.

For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 13536. (Contributed by AV, 23-Dec-2022.)

𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
 
Theorem2logb9irrap 13535 Example for logbgcd1irrap 13528. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.)
(𝑄 ∈ ℚ → (2 logb 9) # 𝑄)
 
Theorem2irrexpqap 13536* There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12112, 2logb9irrap 13535 and sqrt2cxp2logb9e3 13533. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.)
𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎𝑐𝑏) ∈ ℚ)
 
10.1.5  Quartic binomial expansion
 
Theorembinom4 13537 Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11425, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
 
10.2  Basic number theory
 
10.2.1  Quadratic residues and the Legendre symbol

If the congruence ((𝑥↑2) mod 𝑝) = (𝑛 mod 𝑝) has a solution we say that 𝑛 is a quadratic residue mod 𝑝. If the congruence has no solution we say that 𝑛 is a quadratic nonresidue mod 𝑝, see definition in [ApostolNT] p. 178. The Legendre symbol (𝑛 /L 𝑝) is defined in a way that its value is 1 if 𝑛 is a quadratic residue mod 𝑝 and -1 if 𝑛 is a quadratic nonresidue mod 𝑝 (and 0 if 𝑝 divides 𝑛).

Originally, the Legendre symbol (𝑁 /L 𝑃) was defined for odd primes 𝑃 only (and arbitrary integers 𝑁) by Adrien-Marie Legendre in 1798, see definition in [ApostolNT] p. 179. It was generalized to be defined for any positive odd integer by Carl Gustav Jacob Jacobi in 1837 (therefore called "Jacobi symbol" since then), see definition in [ApostolNT] p. 188. Finally, it was generalized to be defined for any integer by Leopold Kronecker in 1885 (therefore called "Kronecker symbol" since then). The definition df-lgs 13539 for the "Legendre symbol" /L is actually the definition of the "Kronecker symbol". Since only one definition (and one class symbol) are provided in set.mm, the names "Legendre symbol", "Jacobi symbol" and "Kronecker symbol" are used synonymously for /L, but mostly it is called "Legendre symbol", even if it is used in the context of a "Jacobi symbol" or "Kronecker symbol".

 
Syntaxclgs 13538 Extend class notation with the Legendre symbol function.
class /L
 
Definitiondf-lgs 13539* Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
/L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
 
Theoremzabsle1 13540 {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.)
(𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))
 
Theoremlgslem1 13541 When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
 
Theoremlgslem2 13542 The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}       (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
 
Theoremlgslem3 13543* The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}       ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
 
Theoremlgslem4 13544* Lemma for lgsfcl2 13547. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.)
𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}       ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
 
Theoremlgsval 13545* Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
 
Theoremlgsfvalg 13546* Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
 
Theoremlgsfcl2 13547* The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 13540). (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))    &   𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
 
Theoremlgscllem 13548* The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))    &   𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
 
Theoremlgsfcl 13549* Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
 
Theoremlgsfle1 13550* The function 𝐹 has magnitude less or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))       (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (abs‘(𝐹𝑀)) ≤ 1)
 
Theoremlgsval2lem 13551* Lemma for lgsval2 13557. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
 
Theoremlgsval4lem 13552* Lemma for lgsval4 13561. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
 
Theoremlgscl2 13553* The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
 
Theoremlgs0 13554 The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
 
Theoremlgscl 13555 The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
 
Theoremlgsle1 13556 The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 13555 this implies that it takes values in {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1)
 
Theoremlgsval2 13557 The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2). (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) = if(𝑃 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)))
 
Theoremlgs2 13558 The Legendre symbol at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
 
Theoremlgsval3 13559 The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
 
Theoremlgsvalmod 13560 The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
 
Theoremlgsval4 13561* Restate lgsval 13545 for nonzero 𝑁, where the function 𝐹 has been abbreviated into a self-referential expression taking the value of /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
 
Theoremlgsfcl3 13562* Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
 
Theoremlgsval4a 13563* Same as lgsval4 13561 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
 
Theoremlgscl1 13564 The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ {-1, 0, 1})
 
Theoremlgsneg 13565 The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))
 
Theoremlgsneg1 13566 The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℕ0𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁))
 
Theoremlgsmod 13567 The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
 
Theoremlgsdilem 13568 Lemma for lgsdi 13578 and lgsdir 13576: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
 
Theoremlgsdir2lem1 13569 Lemma for lgsdir2 13574. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
 
Theoremlgsdir2lem2 13570 Lemma for lgsdir2 13574. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))    &   𝑀 = (𝐾 + 1)    &   𝑁 = (𝑀 + 1)    &   𝑁𝑆       (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))
 
Theoremlgsdir2lem3 13571 Lemma for lgsdir2 13574. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
 
Theoremlgsdir2lem4 13572 Lemma for lgsdir2 13574. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
 
Theoremlgsdir2lem5 13573 Lemma for lgsdir2 13574. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
 
Theoremlgsdir2 13574 The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
 
Theoremlgsdirprm 13575 The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
 
Theoremlgsdir 13576 The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
 
Theoremlgsdilem2 13577* Lemma for lgsdi 13578. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀 ≠ 0)    &   (𝜑𝑁 ≠ 0)    &   𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))       (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
 
Theoremlgsdi 13578 The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
 
Theoremlgsne0 13579 The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremlgsabs1 13580 The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremlgssq 13581 The Legendre symbol at a square is equal to 1. Together with lgsmod 13567 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1)
 
Theoremlgssq2 13582 The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1)
 
Theoremlgsprme0 13583 The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
 
Theorem1lgs 13584 The Legendre symbol at 1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.)
(𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
 
Theoremlgs1 13585 The Legendre symbol at 1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.)
(𝐴 ∈ ℤ → (𝐴 /L 1) = 1)
 
Theoremlgsmodeq 13586 The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → (𝐴 /L 𝑁) = (𝐵 /L 𝑁)))
 
Theoremlgsmulsqcoprm 13587 The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁))
 
Theoremlgsdirnn0 13588 Variation on lgsdir 13576 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
 
Theoremlgsdinn0 13589 Variation on lgsdi 13578 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
 
10.2.2  All primes 4n+1 are the sum of two squares
 
Theorem2sqlem1 13590* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
 
Theorem2sqlem2 13591* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
 
Theoremmul2sq 13592 Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
 
Theorem2sqlem3 13593 Lemma for 2sqlem5 13595. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))    &   (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))    &   (𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))       (𝜑𝑁𝑆)
 
Theorem2sqlem4 13594 Lemma for 2sqlem5 13595. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))    &   (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))       (𝜑𝑁𝑆)
 
Theorem2sqlem5 13595 Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)    &   (𝜑𝑃𝑆)       (𝜑𝑁𝑆)
 
Theorem2sqlem6 13596* Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))    &   (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)       (𝜑𝐴𝑆)
 
Theorem2sqlem7 13597* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}       𝑌 ⊆ (𝑆 ∩ ℕ)
 
Theorem2sqlem8a 13598* Lemma for 2sqlem8 13599. (Contributed by Mario Carneiro, 4-Jun-2016.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ (ℤ‘2))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)    &   (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))    &   𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))       (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
 
Theorem2sqlem8 13599* Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ (ℤ‘2))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)    &   (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))    &   𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐸 = (𝐶 / (𝐶 gcd 𝐷))    &   𝐹 = (𝐷 / (𝐶 gcd 𝐷))       (𝜑𝑀𝑆)
 
Theorem2sqlem9 13600* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁𝑌)       (𝜑𝑀𝑆)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >