Theorem List for Intuitionistic Logic Explorer - 13501-13600 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | mulgfvalg 13501* |
Group multiple (exponentiation) operation. (Contributed by Mario
Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
| |
| Theorem | mulgval 13502 |
Value of the group multiple (exponentiation) operation. (Contributed
by Mario Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝑆 = seq1( + , (ℕ × {𝑋}))
⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| |
| Theorem | mulgex 13503 |
Existence of the group multiple operation. (Contributed by Jim Kingdon,
22-Apr-2025.)
|
| ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| |
| Theorem | mulgfng 13504 |
Functionality of the group multiple operation. (Contributed by Mario
Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → · Fn (ℤ
× 𝐵)) |
| |
| Theorem | mulg0 13505 |
Group multiple (exponentiation) operation at zero. (Contributed by
Mario Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| |
| Theorem | mulgnn 13506 |
Group multiple (exponentiation) operation at a positive integer.
(Contributed by Mario Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝑆 = seq1( + , (ℕ × {𝑋}))
⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
| |
| Theorem | mulgnngsum 13507* |
Group multiple (exponentiation) operation at a positive integer
expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| |
| Theorem | mulgnn0gsum 13508* |
Group multiple (exponentiation) operation at a nonnegative integer
expressed by a group sum. This corresponds to the definition in [Lang]
p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| |
| Theorem | mulg1 13509 |
Group multiple (exponentiation) operation at one. (Contributed by
Mario Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| |
| Theorem | mulgnnp1 13510 |
Group multiple (exponentiation) operation at a successor.
(Contributed by Mario Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| |
| Theorem | mulg2 13511 |
Group multiple (exponentiation) operation at two. (Contributed by
Mario Carneiro, 15-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (2 · 𝑋) = (𝑋 + 𝑋)) |
| |
| Theorem | mulgnegnn 13512 |
Group multiple (exponentiation) operation at a negative integer.
(Contributed by Mario Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) |
| |
| Theorem | mulgnn0p1 13513 |
Group multiple (exponentiation) operation at a successor, extended to
ℕ0. (Contributed by Mario
Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| |
| Theorem | mulgnnsubcl 13514* |
Closure of the group multiple (exponentiation) operation in a
subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ 𝑉)
& ⊢ (𝜑 → 𝑆 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| |
| Theorem | mulgnn0subcl 13515* |
Closure of the group multiple (exponentiation) operation in a submonoid.
(Contributed by Mario Carneiro, 10-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ 𝑉)
& ⊢ (𝜑 → 𝑆 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| |
| Theorem | mulgsubcl 13516* |
Closure of the group multiple (exponentiation) operation in a subgroup.
(Contributed by Mario Carneiro, 10-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ 𝑉)
& ⊢ (𝜑 → 𝑆 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 0 ∈ 𝑆)
& ⊢ 𝐼 = (invg‘𝐺)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| |
| Theorem | mulgnncl 13517 |
Closure of the group multiple (exponentiation) operation for a positive
multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.)
(Revised by AV, 29-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| |
| Theorem | mulgnn0cl 13518 |
Closure of the group multiple (exponentiation) operation for a
nonnegative multiplier in a monoid. (Contributed by Mario Carneiro,
11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| |
| Theorem | mulgcl 13519 |
Closure of the group multiple (exponentiation) operation. (Contributed
by Mario Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| |
| Theorem | mulgneg 13520 |
Group multiple (exponentiation) operation at a negative integer.
(Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro,
11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) |
| |
| Theorem | mulgnegneg 13521 |
The inverse of a negative group multiple is the positive group multiple.
(Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV,
30-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| |
| Theorem | mulgm1 13522 |
Group multiple (exponentiation) operation at negative one. (Contributed
by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro,
20-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (-1 · 𝑋) = (𝐼‘𝑋)) |
| |
| Theorem | mulgnn0cld 13523 |
Closure of the group multiple (exponentiation) operation for a
nonnegative multiplier in a monoid. Deduction associated with
mulgnn0cl 13518. (Contributed by SN, 1-Feb-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
| |
| Theorem | mulgcld 13524 |
Deduction associated with mulgcl 13519. (Contributed by Rohan Ridenour,
3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
| |
| Theorem | mulgaddcomlem 13525 |
Lemma for mulgaddcom 13526. (Contributed by Paul Chapman,
17-Apr-2009.)
(Revised by AV, 31-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) |
| |
| Theorem | mulgaddcom 13526 |
The group multiple operator commutes with the group operation.
(Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV,
31-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))) |
| |
| Theorem | mulginvcom 13527 |
The group multiple operator commutes with the group inverse function.
(Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV,
31-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))) |
| |
| Theorem | mulginvinv 13528 |
The group multiple operator commutes with the group inverse function.
(Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV,
31-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · (𝐼‘𝑋))) = (𝑁 · 𝑋)) |
| |
| Theorem | mulgnn0z 13529 |
A group multiple of the identity, for nonnegative multiple.
(Contributed by Mario Carneiro, 13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| |
| Theorem | mulgz 13530 |
A group multiple of the identity, for integer multiple. (Contributed by
Mario Carneiro, 13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
| |
| Theorem | mulgnndir 13531 |
Sum of group multiples, for positive multiples. (Contributed by Mario
Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
| |
| Theorem | mulgnn0dir 13532 |
Sum of group multiples, generalized to ℕ0. (Contributed by Mario
Carneiro, 11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
| |
| Theorem | mulgdirlem 13533 |
Lemma for mulgdir 13534. (Contributed by Mario Carneiro,
13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) →
((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
| |
| Theorem | mulgdir 13534 |
Sum of group multiples, generalized to ℤ.
(Contributed by Mario
Carneiro, 13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
| |
| Theorem | mulgp1 13535 |
Group multiple (exponentiation) operation at a successor, extended to
ℤ. (Contributed by Mario Carneiro,
11-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| |
| Theorem | mulgneg2 13536 |
Group multiple (exponentiation) operation at a negative integer.
(Contributed by Mario Carneiro, 13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋))) |
| |
| Theorem | mulgnnass 13537 |
Product of group multiples, for positive multiples in a semigroup.
(Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV,
29-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |
| |
| Theorem | mulgnn0ass 13538 |
Product of group multiples, generalized to ℕ0. (Contributed by
Mario Carneiro, 13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |
| |
| Theorem | mulgass 13539 |
Product of group multiples, generalized to ℤ.
(Contributed by
Mario Carneiro, 13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |
| |
| Theorem | mulgassr 13540 |
Reversed product of group multiples. (Contributed by Paul Chapman,
17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑁 · 𝑀) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |
| |
| Theorem | mulgmodid 13541 |
Casting out multiples of the identity element leaves the group multiple
unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV,
30-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋)) |
| |
| Theorem | mulgsubdir 13542 |
Distribution of group multiples over subtraction for group elements,
subdir 8465 analog. (Contributed by Mario Carneiro,
13-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
| |
| Theorem | mhmmulg 13543 |
A homomorphism of monoids preserves group multiples. (Contributed by
Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ × =
(.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) |
| |
| Theorem | mulgpropdg 13544* |
Two structures with the same group-nature have the same group multiple
function. 𝐾 is expected to either be V (when strong equality is
available) or 𝐵 (when closure is available).
(Contributed by Stefan
O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ (𝜑 → · =
(.g‘𝐺)) & ⊢ (𝜑 → × =
(.g‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉)
& ⊢ (𝜑 → 𝐻 ∈ 𝑊)
& ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐵 ⊆ 𝐾)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐾)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) ⇒ ⊢ (𝜑 → · = ×
) |
| |
| Theorem | submmulgcl 13545 |
Closure of the group multiple (exponentiation) operation in a submonoid.
(Contributed by Mario Carneiro, 13-Jan-2015.)
|
| ⊢ ∙ =
(.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) ∈ 𝑆) |
| |
| Theorem | submmulg 13546 |
A group multiple is the same if evaluated in a submonoid. (Contributed
by Mario Carneiro, 15-Jun-2015.)
|
| ⊢ ∙ =
(.g‘𝐺)
& ⊢ 𝐻 = (𝐺 ↾s 𝑆)
& ⊢ · =
(.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) |
| |
| 7.2.3 Subgroups and Quotient
groups
|
| |
| Syntax | csubg 13547 |
Extend class notation with all subgroups of a group.
|
| class SubGrp |
| |
| Syntax | cnsg 13548 |
Extend class notation with all normal subgroups of a group.
|
| class NrmSGrp |
| |
| Syntax | cqg 13549 |
Quotient group equivalence class.
|
| class ~QG |
| |
| Definition | df-subg 13550* |
Define a subgroup of a group as a set of elements that is a group in its
own right. Equivalently (issubg2m 13569), a subgroup is a subset of the
group that is closed for the group internal operation (see subgcl 13564),
contains the neutral element of the group (see subg0 13560) and contains
the inverses for all of its elements (see subginvcl 13563). (Contributed
by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) |
| |
| Definition | df-nsg 13551* |
Define the equivalence relation in a quotient ring or quotient group
(where 𝑖 is a two-sided ideal or a normal
subgroup). For non-normal
subgroups this generates the left cosets. (Contributed by Mario
Carneiro, 15-Jun-2015.)
|
| ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
| |
| Definition | df-eqg 13552* |
Define the equivalence relation in a group generated by a subgroup.
More precisely, if 𝐺 is a group and 𝐻 is a
subgroup, then
𝐺
~QG 𝐻 is the equivalence relation on 𝐺
associated with the
left cosets of 𝐻. A typical application of this
definition is the
construction of the quotient group (resp. ring) of a group (resp. ring)
by a normal subgroup (resp. two-sided ideal). (Contributed by Mario
Carneiro, 15-Jun-2015.)
|
| ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) |
| |
| Theorem | issubg 13553 |
The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| |
| Theorem | subgss 13554 |
A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| |
| Theorem | subgid 13555 |
A group is a subgroup of itself. (Contributed by Mario Carneiro,
7-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| |
| Theorem | subgex 13556 |
The class of subgroups of a group is a set. (Contributed by Jim
Kingdon, 8-Mar-2025.)
|
| ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) |
| |
| Theorem | subggrp 13557 |
A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| |
| Theorem | subgbas 13558 |
The base of the restricted group in a subgroup. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| |
| Theorem | subgrcl 13559 |
Reverse closure for the subgroup predicate. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| |
| Theorem | subg0 13560 |
A subgroup of a group must have the same identity as the group.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝑆)
& ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 =
(0g‘𝐻)) |
| |
| Theorem | subginv 13561 |
The inverse of an element in a subgroup is the same as the inverse in
the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝑆)
& ⊢ 𝐼 = (invg‘𝐺)
& ⊢ 𝐽 = (invg‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |
| |
| Theorem | subg0cl 13562 |
The group identity is an element of any subgroup. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| |
| Theorem | subginvcl 13563 |
The inverse of an element is closed in a subgroup. (Contributed by
Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) |
| |
| Theorem | subgcl 13564 |
A subgroup is closed under group operation. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| |
| Theorem | subgsubcl 13565 |
A subgroup is closed under group subtraction. (Contributed by Mario
Carneiro, 18-Jan-2015.)
|
| ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) |
| |
| Theorem | subgsub 13566 |
The subtraction of elements in a subgroup is the same as subtraction in
the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
|
| ⊢ − =
(-g‘𝐺)
& ⊢ 𝐻 = (𝐺 ↾s 𝑆)
& ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) |
| |
| Theorem | subgmulgcl 13567 |
Closure of the group multiple (exponentiation) operation in a subgroup.
(Contributed by Mario Carneiro, 13-Jan-2015.)
|
| ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| |
| Theorem | subgmulg 13568 |
A group multiple is the same if evaluated in a subgroup. (Contributed
by Mario Carneiro, 15-Jan-2015.)
|
| ⊢ · =
(.g‘𝐺)
& ⊢ 𝐻 = (𝐺 ↾s 𝑆)
& ⊢ ∙ =
(.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (𝑁 ∙ 𝑋)) |
| |
| Theorem | issubg2m 13569* |
Characterize the subgroups of a group by closure properties.
(Contributed by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)))) |
| |
| Theorem | issubgrpd2 13570* |
Prove a subgroup by closure (definition version). (Contributed by
Stefan O'Rear, 7-Dec-2014.)
|
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 =
(0g‘𝐼)) & ⊢ (𝜑 → + =
(+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷)
& ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| |
| Theorem | issubgrpd 13571* |
Prove a subgroup by closure. (Contributed by Stefan O'Rear,
7-Dec-2014.)
|
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 =
(0g‘𝐼)) & ⊢ (𝜑 → + =
(+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷)
& ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑆 ∈ Grp) |
| |
| Theorem | issubg3 13572* |
A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro,
7-Mar-2015.)
|
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆))) |
| |
| Theorem | issubg4m 13573* |
A subgroup is an inhabited subset of the group closed under subtraction.
(Contributed by Mario Carneiro, 17-Sep-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑤 𝑤 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆))) |
| |
| Theorem | grpissubg 13574 |
If the base set of a group is contained in the base set of another
group, and the group operation of the group is the restriction of the
group operation of the other group to its base set, then the (base set
of the) group is subgroup of the other group. (Contributed by AV,
14-Mar-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) |
| |
| Theorem | resgrpisgrp 13575 |
If the base set of a group is contained in the base set of another
group, and the group operation of the group is the restriction of the
group operation of the other group to its base set, then the other group
restricted to the base set of the group is a group. (Contributed by AV,
14-Mar-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) |
| |
| Theorem | subgsubm 13576 |
A subgroup is a submonoid. (Contributed by Mario Carneiro,
18-Jun-2015.)
|
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺)) |
| |
| Theorem | subsubg 13577 |
A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro,
19-Jan-2015.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴 ⊆ 𝑆))) |
| |
| Theorem | subgintm 13578* |
The intersection of an inhabited collection of subgroups is a subgroup.
(Contributed by Mario Carneiro, 7-Dec-2014.)
|
| ⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤 ∈ 𝑆) → ∩ 𝑆 ∈ (SubGrp‘𝐺)) |
| |
| Theorem | 0subg 13579 |
The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear,
10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
|
| ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈
(SubGrp‘𝐺)) |
| |
| Theorem | trivsubgd 13580 |
The only subgroup of a trivial group is itself. (Contributed by Rohan
Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) & ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | trivsubgsnd 13581 |
The only subgroup of a trivial group is itself. (Contributed by Rohan
Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0
}) ⇒ ⊢ (𝜑 → (SubGrp‘𝐺) = {𝐵}) |
| |
| Theorem | isnsg 13582* |
Property of being a normal subgroup. (Contributed by Mario Carneiro,
18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
| |
| Theorem | isnsg2 13583* |
Weaken the condition of isnsg 13582 to only one side of the implication.
(Contributed by Mario Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))) |
| |
| Theorem | nsgbi 13584 |
Defining property of a normal subgroup. (Contributed by Mario Carneiro,
18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
| |
| Theorem | nsgsubg 13585 |
A normal subgroup is a subgroup. (Contributed by Mario Carneiro,
18-Jan-2015.)
|
| ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| |
| Theorem | nsgconj 13586 |
The conjugation of an element of a normal subgroup is in the subgroup.
(Contributed by Mario Carneiro, 4-Feb-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
| |
| Theorem | isnsg3 13587* |
A subgroup is normal iff the conjugation of all the elements of the
subgroup is in the subgroup. (Contributed by Mario Carneiro,
18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆)) |
| |
| Theorem | elnmz 13588* |
Elementhood in the normalizer. (Contributed by Mario Carneiro,
18-Jan-2015.)
|
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| |
| Theorem | nmzbi 13589* |
Defining property of the normalizer. (Contributed by Mario Carneiro,
18-Jan-2015.)
|
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
| |
| Theorem | nmzsubg 13590* |
The normalizer NG(S) of a subset 𝑆 of the
group is a subgroup.
(Contributed by Mario Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |
| |
| Theorem | ssnmz 13591* |
A subgroup is a subset of its normalizer. (Contributed by Mario
Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) |
| |
| Theorem | isnsg4 13592* |
A subgroup is normal iff its normalizer is the entire group.
(Contributed by Mario Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) |
| |
| Theorem | nmznsg 13593* |
Any subgroup is a normal subgroup of its normalizer. (Contributed by
Mario Carneiro, 19-Jan-2015.)
|
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + =
(+g‘𝐺)
& ⊢ 𝐻 = (𝐺 ↾s 𝑁) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) |
| |
| Theorem | 0nsg 13594 |
The zero subgroup is normal. (Contributed by Mario Carneiro,
4-Feb-2015.)
|
| ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈
(NrmSGrp‘𝐺)) |
| |
| Theorem | nsgid 13595 |
The whole group is a normal subgroup of itself. (Contributed by Mario
Carneiro, 4-Feb-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| |
| Theorem | 0idnsgd 13596 |
The whole group and the zero subgroup are normal subgroups of a group.
(Contributed by Rohan Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺)) |
| |
| Theorem | trivnsgd 13597 |
The only normal subgroup of a trivial group is itself. (Contributed by
Rohan Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0
}) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) = {𝐵}) |
| |
| Theorem | triv1nsgd 13598 |
A trivial group has exactly one normal subgroup. (Contributed by Rohan
Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0
}) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) |
| |
| Theorem | 1nsgtrivd 13599 |
A group with exactly one normal subgroup is trivial. (Contributed by
Rohan Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈
1o) ⇒ ⊢ (𝜑 → 𝐵 = { 0 }) |
| |
| Theorem | releqgg 13600 |
The left coset equivalence relation is a relation. (Contributed by
Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → Rel 𝑅) |