![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ntrval | GIF version |
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ntrval | β’ ((π½ β Top β§ π β π) β ((intβπ½)βπ) = βͺ (π½ β© π« π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 β’ π = βͺ π½ | |
2 | 1 | ntrfval 13685 | . . . 4 β’ (π½ β Top β (intβπ½) = (π₯ β π« π β¦ βͺ (π½ β© π« π₯))) |
3 | 2 | fveq1d 5519 | . . 3 β’ (π½ β Top β ((intβπ½)βπ) = ((π₯ β π« π β¦ βͺ (π½ β© π« π₯))βπ)) |
4 | 3 | adantr 276 | . 2 β’ ((π½ β Top β§ π β π) β ((intβπ½)βπ) = ((π₯ β π« π β¦ βͺ (π½ β© π« π₯))βπ)) |
5 | eqid 2177 | . . 3 β’ (π₯ β π« π β¦ βͺ (π½ β© π« π₯)) = (π₯ β π« π β¦ βͺ (π½ β© π« π₯)) | |
6 | pweq 3580 | . . . . 5 β’ (π₯ = π β π« π₯ = π« π) | |
7 | 6 | ineq2d 3338 | . . . 4 β’ (π₯ = π β (π½ β© π« π₯) = (π½ β© π« π)) |
8 | 7 | unieqd 3822 | . . 3 β’ (π₯ = π β βͺ (π½ β© π« π₯) = βͺ (π½ β© π« π)) |
9 | 1 | topopn 13593 | . . . . 5 β’ (π½ β Top β π β π½) |
10 | elpw2g 4158 | . . . . 5 β’ (π β π½ β (π β π« π β π β π)) | |
11 | 9, 10 | syl 14 | . . . 4 β’ (π½ β Top β (π β π« π β π β π)) |
12 | 11 | biimpar 297 | . . 3 β’ ((π½ β Top β§ π β π) β π β π« π) |
13 | inex1g 4141 | . . . . 5 β’ (π½ β Top β (π½ β© π« π) β V) | |
14 | 13 | adantr 276 | . . . 4 β’ ((π½ β Top β§ π β π) β (π½ β© π« π) β V) |
15 | uniexg 4441 | . . . 4 β’ ((π½ β© π« π) β V β βͺ (π½ β© π« π) β V) | |
16 | 14, 15 | syl 14 | . . 3 β’ ((π½ β Top β§ π β π) β βͺ (π½ β© π« π) β V) |
17 | 5, 8, 12, 16 | fvmptd3 5611 | . 2 β’ ((π½ β Top β§ π β π) β ((π₯ β π« π β¦ βͺ (π½ β© π« π₯))βπ) = βͺ (π½ β© π« π)) |
18 | 4, 17 | eqtrd 2210 | 1 β’ ((π½ β Top β§ π β π) β ((intβπ½)βπ) = βͺ (π½ β© π« π)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 Vcvv 2739 β© cin 3130 β wss 3131 π« cpw 3577 βͺ cuni 3811 β¦ cmpt 4066 βcfv 5218 Topctop 13582 intcnt 13678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-top 13583 df-ntr 13681 |
This theorem is referenced by: ntropn 13702 ntrss 13704 ntrss2 13706 ssntr 13707 isopn3 13710 ntreq0 13717 |
Copyright terms: Public domain | W3C validator |