ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrval GIF version

Theorem ntrval 14430
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))

Proof of Theorem ntrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21ntrfval 14420 . . . 4 (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
32fveq1d 5563 . . 3 (𝐽 ∈ Top → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
43adantr 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
5 eqid 2196 . . 3 (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))
6 pweq 3609 . . . . 5 (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆)
76ineq2d 3365 . . . 4 (𝑥 = 𝑆 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
87unieqd 3851 . . 3 (𝑥 = 𝑆 (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
91topopn 14328 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 4190 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 14 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 297 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
13 inex1g 4170 . . . . 5 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1413adantr 276 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
15 uniexg 4475 . . . 4 ((𝐽 ∩ 𝒫 𝑆) ∈ V → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1614, 15syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
175, 8, 12, 16fvmptd3 5658 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
184, 17eqtrd 2229 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  wss 3157  𝒫 cpw 3606   cuni 3840  cmpt 4095  cfv 5259  Topctop 14317  intcnt 14413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-top 14318  df-ntr 14416
This theorem is referenced by:  ntropn  14437  ntrss  14439  ntrss2  14441  ssntr  14442  isopn3  14445  ntreq0  14452
  Copyright terms: Public domain W3C validator