ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrval GIF version

Theorem ntrval 14792
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))

Proof of Theorem ntrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21ntrfval 14782 . . . 4 (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
32fveq1d 5631 . . 3 (𝐽 ∈ Top → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
43adantr 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
5 eqid 2229 . . 3 (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))
6 pweq 3652 . . . . 5 (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆)
76ineq2d 3405 . . . 4 (𝑥 = 𝑆 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
87unieqd 3899 . . 3 (𝑥 = 𝑆 (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
91topopn 14690 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 4240 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 14 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 297 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
13 inex1g 4220 . . . . 5 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1413adantr 276 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
15 uniexg 4530 . . . 4 ((𝐽 ∩ 𝒫 𝑆) ∈ V → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1614, 15syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
175, 8, 12, 16fvmptd3 5730 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
184, 17eqtrd 2262 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  𝒫 cpw 3649   cuni 3888  cmpt 4145  cfv 5318  Topctop 14679  intcnt 14775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-top 14680  df-ntr 14778
This theorem is referenced by:  ntropn  14799  ntrss  14801  ntrss2  14803  ssntr  14804  isopn3  14807  ntreq0  14814
  Copyright terms: Public domain W3C validator