![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ntrval | GIF version |
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrfval 14279 | . . . 4 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) |
3 | 2 | fveq1d 5557 | . . 3 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆)) |
4 | 3 | adantr 276 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆)) |
5 | eqid 2193 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) | |
6 | pweq 3605 | . . . . 5 ⊢ (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆) | |
7 | 6 | ineq2d 3361 | . . . 4 ⊢ (𝑥 = 𝑆 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆)) |
8 | 7 | unieqd 3847 | . . 3 ⊢ (𝑥 = 𝑆 → ∪ (𝐽 ∩ 𝒫 𝑥) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
9 | 1 | topopn 14187 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
10 | elpw2g 4186 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
12 | 11 | biimpar 297 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
13 | inex1g 4166 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ V) | |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V) |
15 | uniexg 4471 | . . . 4 ⊢ ((𝐽 ∩ 𝒫 𝑆) ∈ V → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ V) | |
16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ V) |
17 | 5, 8, 12, 16 | fvmptd3 5652 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
18 | 4, 17 | eqtrd 2226 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3153 ⊆ wss 3154 𝒫 cpw 3602 ∪ cuni 3836 ↦ cmpt 4091 ‘cfv 5255 Topctop 14176 intcnt 14272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-top 14177 df-ntr 14275 |
This theorem is referenced by: ntropn 14296 ntrss 14298 ntrss2 14300 ssntr 14301 isopn3 14304 ntreq0 14311 |
Copyright terms: Public domain | W3C validator |