ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrval GIF version

Theorem ntrval 14289
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))

Proof of Theorem ntrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21ntrfval 14279 . . . 4 (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
32fveq1d 5557 . . 3 (𝐽 ∈ Top → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
43adantr 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
5 eqid 2193 . . 3 (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))
6 pweq 3605 . . . . 5 (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆)
76ineq2d 3361 . . . 4 (𝑥 = 𝑆 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
87unieqd 3847 . . 3 (𝑥 = 𝑆 (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
91topopn 14187 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 4186 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 14 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 297 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
13 inex1g 4166 . . . . 5 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1413adantr 276 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
15 uniexg 4471 . . . 4 ((𝐽 ∩ 𝒫 𝑆) ∈ V → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1614, 15syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
175, 8, 12, 16fvmptd3 5652 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
184, 17eqtrd 2226 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  wss 3154  𝒫 cpw 3602   cuni 3836  cmpt 4091  cfv 5255  Topctop 14176  intcnt 14272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 14177  df-ntr 14275
This theorem is referenced by:  ntropn  14296  ntrss  14298  ntrss2  14300  ssntr  14301  isopn3  14304  ntreq0  14311
  Copyright terms: Public domain W3C validator