| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrval | GIF version | ||
| Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrfval 14759 | . . . 4 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) |
| 3 | 2 | fveq1d 5625 | . . 3 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆)) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆)) |
| 5 | eqid 2229 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) | |
| 6 | pweq 3652 | . . . . 5 ⊢ (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆) | |
| 7 | 6 | ineq2d 3405 | . . . 4 ⊢ (𝑥 = 𝑆 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆)) |
| 8 | 7 | unieqd 3898 | . . 3 ⊢ (𝑥 = 𝑆 → ∪ (𝐽 ∩ 𝒫 𝑥) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 9 | 1 | topopn 14667 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 10 | elpw2g 4239 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
| 12 | 11 | biimpar 297 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
| 13 | inex1g 4219 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ V) | |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V) |
| 15 | uniexg 4527 | . . . 4 ⊢ ((𝐽 ∩ 𝒫 𝑆) ∈ V → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ V) | |
| 16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ V) |
| 17 | 5, 8, 12, 16 | fvmptd3 5721 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 18 | 4, 17 | eqtrd 2262 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3887 ↦ cmpt 4144 ‘cfv 5314 Topctop 14656 intcnt 14752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-top 14657 df-ntr 14755 |
| This theorem is referenced by: ntropn 14776 ntrss 14778 ntrss2 14780 ssntr 14781 isopn3 14784 ntreq0 14791 |
| Copyright terms: Public domain | W3C validator |