ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-tan GIF version

Definition df-tan 11963
Description: Define the tangent function. We define it this way for cmpt 4105, which requires the form (𝑥𝐴𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
df-tan tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))

Detailed syntax breakdown of Definition df-tan
StepHypRef Expression
1 ctan 11957 . 2 class tan
2 vx . . 3 setvar 𝑥
3 ccos 11956 . . . . 5 class cos
43ccnv 4674 . . . 4 class cos
5 cc 7923 . . . . 5 class
6 cc0 7925 . . . . . 6 class 0
76csn 3633 . . . . 5 class {0}
85, 7cdif 3163 . . . 4 class (ℂ ∖ {0})
94, 8cima 4678 . . 3 class (cos “ (ℂ ∖ {0}))
102cv 1372 . . . . 5 class 𝑥
11 csin 11955 . . . . 5 class sin
1210, 11cfv 5271 . . . 4 class (sin‘𝑥)
1310, 3cfv 5271 . . . 4 class (cos‘𝑥)
14 cdiv 8745 . . . 4 class /
1512, 13, 14co 5944 . . 3 class ((sin‘𝑥) / (cos‘𝑥))
162, 9, 15cmpt 4105 . 2 class (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
171, 16wceq 1373 1 wff tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
Colors of variables: wff set class
This definition is referenced by:  tanvalap  12019
  Copyright terms: Public domain W3C validator