ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-tan GIF version

Definition df-tan 11662
Description: Define the tangent function. We define it this way for cmpt 4066, which requires the form (π‘₯ ∈ 𝐴 ↦ 𝐡). (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
df-tan tan = (π‘₯ ∈ (β—‘cos β€œ (β„‚ βˆ– {0})) ↦ ((sinβ€˜π‘₯) / (cosβ€˜π‘₯)))

Detailed syntax breakdown of Definition df-tan
StepHypRef Expression
1 ctan 11656 . 2 class tan
2 vx . . 3 setvar π‘₯
3 ccos 11655 . . . . 5 class cos
43ccnv 4627 . . . 4 class β—‘cos
5 cc 7811 . . . . 5 class β„‚
6 cc0 7813 . . . . . 6 class 0
76csn 3594 . . . . 5 class {0}
85, 7cdif 3128 . . . 4 class (β„‚ βˆ– {0})
94, 8cima 4631 . . 3 class (β—‘cos β€œ (β„‚ βˆ– {0}))
102cv 1352 . . . . 5 class π‘₯
11 csin 11654 . . . . 5 class sin
1210, 11cfv 5218 . . . 4 class (sinβ€˜π‘₯)
1310, 3cfv 5218 . . . 4 class (cosβ€˜π‘₯)
14 cdiv 8631 . . . 4 class /
1512, 13, 14co 5877 . . 3 class ((sinβ€˜π‘₯) / (cosβ€˜π‘₯))
162, 9, 15cmpt 4066 . 2 class (π‘₯ ∈ (β—‘cos β€œ (β„‚ βˆ– {0})) ↦ ((sinβ€˜π‘₯) / (cosβ€˜π‘₯)))
171, 16wceq 1353 1 wff tan = (π‘₯ ∈ (β—‘cos β€œ (β„‚ βˆ– {0})) ↦ ((sinβ€˜π‘₯) / (cosβ€˜π‘₯)))
Colors of variables: wff set class
This definition is referenced by:  tanvalap  11718
  Copyright terms: Public domain W3C validator