| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-pi | GIF version | ||
| Description: Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
| Ref | Expression |
|---|---|
| df-pi | ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpi 11812 | . 2 class π | |
| 2 | crp 9728 | . . . 4 class ℝ+ | |
| 3 | csin 11809 | . . . . . 6 class sin | |
| 4 | 3 | ccnv 4662 | . . . . 5 class ◡sin |
| 5 | cc0 7879 | . . . . . 6 class 0 | |
| 6 | 5 | csn 3622 | . . . . 5 class {0} |
| 7 | 4, 6 | cima 4666 | . . . 4 class (◡sin “ {0}) |
| 8 | 2, 7 | cin 3156 | . . 3 class (ℝ+ ∩ (◡sin “ {0})) |
| 9 | cr 7878 | . . 3 class ℝ | |
| 10 | clt 8061 | . . 3 class < | |
| 11 | 8, 9, 10 | cinf 7049 | . 2 class inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
| 12 | 1, 11 | wceq 1364 | 1 wff π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) |
| Colors of variables: wff set class |
| This definition is referenced by: pilem3 15019 |
| Copyright terms: Public domain | W3C validator |