HomeHome Intuitionistic Logic Explorer
Theorem List (p. 117 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11601-11700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremef0lem 11601* The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
 
Theoremefval 11602* Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
 
Theoremesum 11603 Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.)
e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
 
Theoremeff 11604 Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
exp:ℂ⟶ℂ
 
Theoremefcl 11605 Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
 
Theoremefval2 11606* Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
 
Theoremefcvg 11607* The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴))
 
Theoremefcvgfsum 11608* Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))       (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
 
Theoremreefcl 11609 The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
(𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
 
Theoremreefcld 11610 The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (exp‘𝐴) ∈ ℝ)
 
Theoremere 11611 Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
e ∈ ℝ
 
Theoremege2le3 11612 Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))    &   𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))       (2 ≤ e ∧ e ≤ 3)
 
Theoremef0 11613 Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
(exp‘0) = 1
 
Theoremefcj 11614 The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
(𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
 
Theoremefaddlem 11615* Lemma for efadd 11616 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))    &   𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
 
Theoremefadd 11616 Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
 
Theoremefcan 11617 Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.)
(𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1)
 
Theoremefap0 11618 The exponential of a complex number is apart from zero. (Contributed by Jim Kingdon, 12-Dec-2022.)
(𝐴 ∈ ℂ → (exp‘𝐴) # 0)
 
Theoremefne0 11619 The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. The same result also holds with not equal replaced by apart, as seen at efap0 11618 (which will be more useful in most contexts). (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.)
(𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
 
Theoremefneg 11620 The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.)
(𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴)))
 
Theoremeff2 11621 The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
exp:ℂ⟶(ℂ ∖ {0})
 
Theoremefsub 11622 Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴𝐵)) = ((exp‘𝐴) / (exp‘𝐵)))
 
Theoremefexp 11623 The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))
 
Theoremefzval 11624 Value of the exponential function for integers. Special case of efval 11602. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
(𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁))
 
Theoremefgt0 11625 The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ ℝ → 0 < (exp‘𝐴))
 
Theoremrpefcl 11626 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+)
 
Theoremrpefcld 11627 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (exp‘𝐴) ∈ ℝ+)
 
Theoremeftlcvg 11628* The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
Theoremeftlcl 11629* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
 
Theoremreeftlcl 11630* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
 
Theoremeftlub 11631* An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))    &   𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) ≤ 1)       (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
 
Theoremefsep 11632* Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   𝑁 = (𝑀 + 1)    &   𝑀 ∈ ℕ0    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)))    &   (𝜑 → (𝐵 + ((𝐴𝑀) / (!‘𝑀))) = 𝐷)       (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)))
 
Theoremeffsumlt 11633* The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
 
Theoremeft0val 11634 The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
(𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
 
Theoremef4p 11635* Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
 
Theoremefgt1p2 11636 The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
(𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
 
Theoremefgt1p 11637 The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))
 
Theoremefgt1 11638 The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ ℝ+ → 1 < (exp‘𝐴))
 
Theoremefltim 11639 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵)))
 
Theoremreef11 11640 The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremreeff1 11641 The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
(exp ↾ ℝ):ℝ–1-1→ℝ+
 
Theoremeflegeo 11642 The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 < 1)       (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))
 
Theoremsinval 11643 Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
 
Theoremcosval 11644 Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
 
Theoremsinf 11645 Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
sin:ℂ⟶ℂ
 
Theoremcosf 11646 Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
cos:ℂ⟶ℂ
 
Theoremsincl 11647 Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
 
Theoremcoscl 11648 Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
 
Theoremtanvalap 11649 Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
 
Theoremtanclap 11650 The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈ ℂ)
 
Theoremsincld 11651 Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (sin‘𝐴) ∈ ℂ)
 
Theoremcoscld 11652 Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (cos‘𝐴) ∈ ℂ)
 
Theoremtanclapd 11653 Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (cos‘𝐴) # 0)       (𝜑 → (tan‘𝐴) ∈ ℂ)
 
Theoremtanval2ap 11654 Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
 
Theoremtanval3ap 11655 Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))
 
Theoremresinval 11656 The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴))))
 
Theoremrecosval 11657 The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴))))
 
Theoremefi4p 11658* Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
 
Theoremresin4p 11659* Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))       (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
 
Theoremrecos4p 11660* Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))       (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
 
Theoremresincl 11661 The sine of a real number is real. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
 
Theoremrecoscl 11662 The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
 
Theoremretanclap 11663 The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.)
((𝐴 ∈ ℝ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈ ℝ)
 
Theoremresincld 11664 Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (sin‘𝐴) ∈ ℝ)
 
Theoremrecoscld 11665 Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (cos‘𝐴) ∈ ℝ)
 
Theoremretanclapd 11666 Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → (cos‘𝐴) # 0)       (𝜑 → (tan‘𝐴) ∈ ℝ)
 
Theoremsinneg 11667 The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
 
Theoremcosneg 11668 The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
 
Theoremtannegap 11669 The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.)
((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘-𝐴) = -(tan‘𝐴))
 
Theoremsin0 11670 Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.)
(sin‘0) = 0
 
Theoremcos0 11671 Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.)
(cos‘0) = 1
 
Theoremtan0 11672 The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.)
(tan‘0) = 0
 
Theoremefival 11673 The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
 
Theoremefmival 11674 The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.)
(𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
 
Theoremefeul 11675 Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.)
(𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴))))))
 
Theoremefieq 11676 The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))
 
Theoremsinadd 11677 Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
 
Theoremcosadd 11678 Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
 
Theoremtanaddaplem 11679 A useful intermediate step in tanaddap 11680 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1))
 
Theoremtanaddap 11680 Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0 ∧ (cos‘(𝐴 + 𝐵)) # 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))))
 
Theoremsinsub 11681 Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵))))
 
Theoremcossub 11682 Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))))
 
Theoremaddsin 11683 Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2)))))
 
Theoremsubsin 11684 Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
 
Theoremsinmul 11685 Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 11678 and cossub 11682. (Contributed by David A. Wheeler, 26-May-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2))
 
Theoremcosmul 11686 Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 11678 and cossub 11682. (Contributed by David A. Wheeler, 26-May-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐴 + 𝐵))) / 2))
 
Theoremaddcos 11687 Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2)))))
 
Theoremsubcos 11688 Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
 
Theoremsincossq 11689 Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
(𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
 
Theoremsin2t 11690 Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.)
(𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴))))
 
Theoremcos2t 11691 Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1))
 
Theoremcos2tsin 11692 Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.)
(𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2))))
 
Theoremsinbnd 11693 The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1))
 
Theoremcosbnd 11694 The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
 
Theoremsinbnd2 11695 The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.)
(𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1))
 
Theoremcosbnd2 11696 The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.)
(𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1))
 
Theoremef01bndlem 11697* Lemma for sin01bnd 11698 and cos01bnd 11699. (Contributed by Paul Chapman, 19-Jan-2008.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))       (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) < ((𝐴↑4) / 6))
 
Theoremsin01bnd 11698 Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
 
Theoremcos01bnd 11699 Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
 
Theoremcos1bnd 11700 Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >