Theorem List for Intuitionistic Logic Explorer - 11601-11700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | sqabs 11601 |
The squares of two reals are equal iff their absolute values are equal.
(Contributed by NM, 6-Mar-2009.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
| |
| Theorem | absrele 11602 |
The absolute value of a complex number is greater than or equal to the
absolute value of its real part. (Contributed by NM, 1-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ →
(abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴)) |
| |
| Theorem | absimle 11603 |
The absolute value of a complex number is greater than or equal to the
absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.)
(Proof shortened by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ →
(abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) |
| |
| Theorem | nn0abscl 11604 |
The absolute value of an integer is a nonnegative integer. (Contributed
by NM, 27-Feb-2005.)
|
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈
ℕ0) |
| |
| Theorem | zabscl 11605 |
The absolute value of an integer is an integer. (Contributed by Stefan
O'Rear, 24-Sep-2014.)
|
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈
ℤ) |
| |
| Theorem | ltabs 11606 |
A number which is less than its absolute value is negative. (Contributed
by Jim Kingdon, 12-Aug-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
| |
| Theorem | abslt 11607 |
Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.)
(Revised by Mario Carneiro, 29-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
| |
| Theorem | absle 11608 |
Absolute value and 'less than or equal to' relation. (Contributed by NM,
6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| |
| Theorem | abssubap0 11609 |
If the absolute value of a complex number is less than a real, its
difference from the real is apart from zero. (Contributed by Jim Kingdon,
12-Aug-2021.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) # 0) |
| |
| Theorem | abssubne0 11610 |
If the absolute value of a complex number is less than a real, its
difference from the real is nonzero. See also abssubap0 11609 which is the
same with not equal changed to apart. (Contributed by NM, 2-Nov-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) ≠ 0) |
| |
| Theorem | absdiflt 11611 |
The absolute value of a difference and 'less than' relation. (Contributed
by Paul Chapman, 18-Sep-2007.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) |
| |
| Theorem | absdifle 11612 |
The absolute value of a difference and 'less than or equal to' relation.
(Contributed by Paul Chapman, 18-Sep-2007.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) |
| |
| Theorem | elicc4abs 11613 |
Membership in a symmetric closed real interval. (Contributed by Stefan
O'Rear, 16-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴 − 𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶 − 𝐴)) ≤ 𝐵)) |
| |
| Theorem | lenegsq 11614 |
Comparison to a nonnegative number based on comparison to squares.
(Contributed by NM, 16-Jan-2006.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2))) |
| |
| Theorem | releabs 11615 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p. 133.
(Contributed by NM,
1-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
| |
| Theorem | recvalap 11616 |
Reciprocal expressed with a real denominator. (Contributed by Jim
Kingdon, 13-Aug-2021.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) |
| |
| Theorem | absidm 11617 |
The absolute value function is idempotent. (Contributed by NM,
20-Nov-2004.)
|
| ⊢ (𝐴 ∈ ℂ →
(abs‘(abs‘𝐴))
= (abs‘𝐴)) |
| |
| Theorem | absgt0ap 11618 |
The absolute value of a number apart from zero is positive. (Contributed
by Jim Kingdon, 13-Aug-2021.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ 0 < (abs‘𝐴))) |
| |
| Theorem | nnabscl 11619 |
The absolute value of a nonzero integer is a positive integer.
(Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew
Salmon, 25-May-2011.)
|
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
| |
| Theorem | abssub 11620 |
Swapping order of subtraction doesn't change the absolute value.
(Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro,
29-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| |
| Theorem | abssubge0 11621 |
Absolute value of a nonnegative difference. (Contributed by NM,
14-Feb-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
| |
| Theorem | abssuble0 11622 |
Absolute value of a nonpositive difference. (Contributed by FL,
3-Jan-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
| |
| Theorem | abstri 11623 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. (Contributed by NM,
7-Mar-2005.) (Proof shortened by
Mario Carneiro, 29-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
| |
| Theorem | abs3dif 11624 |
Absolute value of differences around common element. (Contributed by FL,
9-Oct-2006.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) |
| |
| Theorem | abs2dif 11625 |
Difference of absolute values. (Contributed by Paul Chapman,
7-Sep-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | abs2dif2 11626 |
Difference of absolute values. (Contributed by Mario Carneiro,
14-Apr-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
| |
| Theorem | abs2difabs 11627 |
Absolute value of difference of absolute values. (Contributed by Paul
Chapman, 7-Sep-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(abs‘((abs‘𝐴)
− (abs‘𝐵)))
≤ (abs‘(𝐴 −
𝐵))) |
| |
| Theorem | recan 11628* |
Cancellation law involving the real part of a complex number.
(Contributed by NM, 12-May-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ
(ℜ‘(𝑥 ·
𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | absf 11629 |
Mapping domain and codomain of the absolute value function.
(Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro,
7-Nov-2013.)
|
| ⊢ abs:ℂ⟶ℝ |
| |
| Theorem | abs3lem 11630 |
Lemma involving absolute value of differences. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) →
(((abs‘(𝐴 −
𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷)) |
| |
| Theorem | fzomaxdiflem 11631 |
Lemma for fzomaxdif 11632. (Contributed by Stefan O'Rear,
6-Sep-2015.)
|
| ⊢ (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) ∈ (0..^(𝐷 − 𝐶))) |
| |
| Theorem | fzomaxdif 11632 |
A bound on the separation of two points in a half-open range.
(Contributed by Stefan O'Rear, 6-Sep-2015.)
|
| ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) |
| |
| Theorem | cau3lem 11633* |
Lemma for cau3 11634. (Contributed by Mario Carneiro,
15-Feb-2014.)
(Revised by Mario Carneiro, 1-May-2014.)
|
| ⊢ 𝑍 ⊆ ℤ & ⊢ (𝜏 → 𝜓)
& ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) & ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
| |
| Theorem | cau3 11634* |
Convert between three-quantifier and four-quantifier versions of the
Cauchy criterion. (In particular, the four-quantifier version has no
occurrence of 𝑗 in the assertion, so it can be used
with rexanuz 11507
and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈
(ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| |
| Theorem | cau4 11635* |
Change the base of a Cauchy criterion. (Contributed by Mario
Carneiro, 18-Mar-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁) ⇒ ⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑊 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| |
| Theorem | caubnd2 11636* |
A Cauchy sequence of complex numbers is eventually bounded.
(Contributed by Mario Carneiro, 14-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |
| |
| Theorem | amgm2 11637 |
Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by
Mario Carneiro, 2-Jul-2014.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) |
| |
| Theorem | sqrtthi 11638 |
Square root theorem. Theorem I.35 of [Apostol]
p. 29. (Contributed by
NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) |
| |
| Theorem | sqrtcli 11639 |
The square root of a nonnegative real is a real. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) |
| |
| Theorem | sqrtgt0i 11640 |
The square root of a positive real is positive. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) |
| |
| Theorem | sqrtmsqi 11641 |
Square root of square. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) |
| |
| Theorem | sqrtsqi 11642 |
Square root of square. (Contributed by NM, 11-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) |
| |
| Theorem | sqsqrti 11643 |
Square of square root. (Contributed by NM, 11-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) |
| |
| Theorem | sqrtge0i 11644 |
The square root of a nonnegative real is nonnegative. (Contributed by
NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) |
| |
| Theorem | absidi 11645 |
A nonnegative number is its own absolute value. (Contributed by NM,
2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) |
| |
| Theorem | absnidi 11646 |
A negative number is the negative of its own absolute value.
(Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) |
| |
| Theorem | leabsi 11647 |
A real number is less than or equal to its absolute value. (Contributed
by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ 𝐴 ≤ (abs‘𝐴) |
| |
| Theorem | absrei 11648 |
Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) |
| |
| Theorem | sqrtpclii 11649 |
The square root of a positive real is a real. (Contributed by Mario
Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈
ℝ |
| |
| Theorem | sqrtgt0ii 11650 |
The square root of a positive real is positive. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) |
| |
| Theorem | sqrt11i 11651 |
The square root function is one-to-one. (Contributed by NM,
27-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | sqrtmuli 11652 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
| |
| Theorem | sqrtmulii 11653 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 ≤ 𝐴 & ⊢ 0 ≤ 𝐵 ⇒ ⊢ (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)) |
| |
| Theorem | sqrtmsq2i 11654 |
Relationship between square root and squares. (Contributed by NM,
31-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐵))) |
| |
| Theorem | sqrtlei 11655 |
Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
| |
| Theorem | sqrtlti 11656 |
Square root is strictly monotonic. (Contributed by Roy F. Longton,
8-Aug-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
| |
| Theorem | abslti 11657 |
Absolute value and 'less than' relation. (Contributed by NM,
6-Apr-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵)) |
| |
| Theorem | abslei 11658 |
Absolute value and 'less than or equal to' relation. (Contributed by
NM, 6-Apr-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
| |
| Theorem | absvalsqi 11659 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)) |
| |
| Theorem | absvalsq2i 11660 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)) |
| |
| Theorem | abscli 11661 |
Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) ∈ ℝ |
| |
| Theorem | absge0i 11662 |
Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ 0 ≤ (abs‘𝐴) |
| |
| Theorem | absval2i 11663 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
| |
| Theorem | abs00i 11664 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by NM,
28-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴) = 0 ↔ 𝐴 = 0) |
| |
| Theorem | absgt0api 11665 |
The absolute value of a nonzero number is positive. Remark in [Apostol]
p. 363. (Contributed by NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 ↔ 0 < (abs‘𝐴)) |
| |
| Theorem | absnegi 11666 |
Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘-𝐴) = (abs‘𝐴) |
| |
| Theorem | abscji 11667 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢
(abs‘(∗‘𝐴)) = (abs‘𝐴) |
| |
| Theorem | releabsi 11668 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (ℜ‘𝐴) ≤ (abs‘𝐴) |
| |
| Theorem | abssubi 11669 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴)) |
| |
| Theorem | absmuli 11670 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)) |
| |
| Theorem | sqabsaddi 11671 |
Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason]
p. 133. (Contributed by NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
| |
| Theorem | sqabssubi 11672 |
Square of absolute value of difference. (Contributed by Steve
Rodriguez, 20-Jan-2007.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
| |
| Theorem | absdivapzi 11673 |
Absolute value distributes over division. (Contributed by Jim Kingdon,
13-Aug-2021.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| |
| Theorem | abstrii 11674 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. This is Metamath 100
proof #91. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) |
| |
| Theorem | abs3difi 11675 |
Absolute value of differences around common element. (Contributed by
NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
| |
| Theorem | abs3lemi 11676 |
Lemma involving absolute value of differences. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
| |
| Theorem | rpsqrtcld 11677 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈
ℝ+) |
| |
| Theorem | sqrtgt0d 11678 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → 0 < (√‘𝐴)) |
| |
| Theorem | absnidd 11679 |
A negative number is the negative of its own absolute value.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = -𝐴) |
| |
| Theorem | leabsd 11680 |
A real number is less than or equal to its absolute value. (Contributed
by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ (abs‘𝐴)) |
| |
| Theorem | absred 11681 |
Absolute value of a real number. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) |
| |
| Theorem | resqrtcld 11682 |
The square root of a nonnegative real is a real. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
| |
| Theorem | sqrtmsqd 11683 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴) |
| |
| Theorem | sqrtsqd 11684 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
| |
| Theorem | sqrtge0d 11685 |
The square root of a nonnegative real is nonnegative. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
| |
| Theorem | absidd 11686 |
A nonnegative number is its own absolute value. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
| |
| Theorem | sqrtdivd 11687 |
Square root distributes over division. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
| |
| Theorem | sqrtmuld 11688 |
Square root distributes over multiplication. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
| |
| Theorem | sqrtsq2d 11689 |
Relationship between square root and squares. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) |
| |
| Theorem | sqrtled 11690 |
Square root is monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
| |
| Theorem | sqrtltd 11691 |
Square root is strictly monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
| |
| Theorem | sqr11d 11692 |
The square root function is one-to-one. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵)
& ⊢ (𝜑 → (√‘𝐴) = (√‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | absltd 11693 |
Absolute value and 'less than' relation. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
| |
| Theorem | absled 11694 |
Absolute value and 'less than or equal to' relation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| |
| Theorem | abssubge0d 11695 |
Absolute value of a nonnegative difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
| |
| Theorem | abssuble0d 11696 |
Absolute value of a nonpositive difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
| |
| Theorem | absdifltd 11697 |
The absolute value of a difference and 'less than' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) |
| |
| Theorem | absdifled 11698 |
The absolute value of a difference and 'less than or equal to' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) |
| |
| Theorem | icodiamlt 11699 |
Two elements in a half-open interval have separation strictly less than
the difference between the endpoints. (Contributed by Stefan O'Rear,
12-Sep-2014.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶 − 𝐷)) < (𝐵 − 𝐴)) |
| |
| Theorem | abscld 11700 |
Real closure of absolute value. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |