Theorem List for Intuitionistic Logic Explorer - 11601-11700 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | fprodcom 11601* |
Interchange product order. (Contributed by Scott Fenton,
2-Feb-2018.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑘 ∈ 𝐵 ∏𝑗 ∈ 𝐴 𝐶) |
|
Theorem | fprod0diagfz 11602* |
Two ways to express "the product of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁. Compare
fisum0diag 11415. (Contributed by Scott Fenton, 2-Feb-2018.)
|
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ (0...𝑁)∏𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = ∏𝑘 ∈ (0...𝑁)∏𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
|
Theorem | fprodrec 11603* |
The finite product of reciprocals is the reciprocal of the product.
(Contributed by Jim Kingdon, 28-Aug-2024.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝐴 𝐵)) |
|
Theorem | fproddivap 11604* |
The quotient of two finite products. (Contributed by Scott Fenton,
15-Jan-2018.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
|
Theorem | fproddivapf 11605* |
The quotient of two finite products. A version of fproddivap 11604 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
|
Theorem | fprodsplitf 11606* |
Split a finite product into two parts. A version of fprodsplit 11571 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
|
Theorem | fprodsplitsn 11607* |
Separate out a term in a finite product. See also fprodunsn 11578 which is
the same but with a distinct variable condition in place of
Ⅎ𝑘𝜑. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
|
Theorem | fprodsplit1f 11608* |
Separate out a term in a finite product. (Contributed by Glauco
Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → Ⅎ𝑘𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
|
Theorem | fprodclf 11609* |
Closure of a finite product of complex numbers. A version of fprodcl 11581
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
|
Theorem | fprodap0f 11610* |
A finite product of terms apart from zero is apart from zero. A version
of fprodap0 11595 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(Revised by Jim Kingdon, 30-Aug-2024.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 # 0) |
|
Theorem | fprodge0 11611* |
If all the terms of a finite product are nonnegative, so is the product.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fprodeq0g 11612* |
Any finite product containing a zero term is itself zero. (Contributed
by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
|
Theorem | fprodge1 11613* |
If all of the terms of a finite product are greater than or equal to
1, so is the product. (Contributed by Glauco
Siliprandi,
5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fprodle 11614* |
If all the terms of two finite products are nonnegative and compare, so
do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶) |
|
Theorem | fprodmodd 11615* |
If all factors of two finite products are equal modulo 𝑀, the
products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) |
|
4.9 Elementary trigonometry
|
|
4.9.1 The exponential, sine, and cosine
functions
|
|
Syntax | ce 11616 |
Extend class notation to include the exponential function.
|
class exp |
|
Syntax | ceu 11617 |
Extend class notation to include Euler's constant e =
2.71828....
|
class e |
|
Syntax | csin 11618 |
Extend class notation to include the sine function.
|
class sin |
|
Syntax | ccos 11619 |
Extend class notation to include the cosine function.
|
class cos |
|
Syntax | ctan 11620 |
Extend class notation to include the tangent function.
|
class tan |
|
Syntax | cpi 11621 |
Extend class notation to include the constant pi, π
= 3.14159....
|
class π |
|
Definition | df-ef 11622* |
Define the exponential function. Its value at the complex number 𝐴
is (exp‘𝐴) and is called the "exponential
of 𝐴"; see
efval 11635. (Contributed by NM, 14-Mar-2005.)
|
⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
|
Definition | df-e 11623 |
Define Euler's constant e = 2.71828.... (Contributed
by NM,
14-Mar-2005.)
|
⊢ e = (exp‘1) |
|
Definition | df-sin 11624 |
Define the sine function. (Contributed by NM, 14-Mar-2005.)
|
⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
|
Definition | df-cos 11625 |
Define the cosine function. (Contributed by NM, 14-Mar-2005.)
|
⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
|
Definition | df-tan 11626 |
Define the tangent function. We define it this way for cmpt 4059,
which
requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario
Carneiro, 14-Mar-2014.)
|
⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
|
Definition | df-pi 11627 |
Define the constant pi, π = 3.14159..., which is the
smallest
positive number whose sine is zero. Definition of π in [Gleason]
p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV,
14-Sep-2020.)
|
⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, <
) |
|
Theorem | eftcl 11628 |
Closure of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 11-Sep-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) |
|
Theorem | reeftcl 11629 |
The terms of the series expansion of the exponential function at a real
number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) |
|
Theorem | eftabs 11630 |
The absolute value of a term in the series expansion of the exponential
function. (Contributed by Paul Chapman, 23-Nov-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) →
(abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) |
|
Theorem | eftvalcn 11631* |
The value of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
|
Theorem | efcllemp 11632* |
Lemma for efcl 11638. The series that defines the exponential
function
converges. The ratio test cvgratgt0 11507 is used to show convergence.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾)
⇒ ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
|
Theorem | efcllem 11633* |
Lemma for efcl 11638. The series that defines the exponential
function
converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝
) |
|
Theorem | ef0lem 11634* |
The series defining the exponential function converges in the (trivial)
case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.)
(Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |
|
Theorem | efval 11635* |
Value of the exponential function. (Contributed by NM, 8-Jan-2006.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
|
Theorem | esum 11636 |
Value of Euler's constant e = 2.71828.... (Contributed
by Steve
Rodriguez, 5-Mar-2006.)
|
⊢ e = Σ𝑘 ∈ ℕ0 (1 /
(!‘𝑘)) |
|
Theorem | eff 11637 |
Domain and codomain of the exponential function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
⊢ exp:ℂ⟶ℂ |
|
Theorem | efcl 11638 |
Closure law for the exponential function. (Contributed by NM,
8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈
ℂ) |
|
Theorem | efval2 11639* |
Value of the exponential function. (Contributed by Mario Carneiro,
29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
|
Theorem | efcvg 11640* |
The series that defines the exponential function converges to it.
(Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) |
|
Theorem | efcvgfsum 11641* |
Exponential function convergence in terms of a sequence of partial
finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
|
Theorem | reefcl 11642 |
The exponential function is real if its argument is real. (Contributed
by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ) |
|
Theorem | reefcld 11643 |
The exponential function is real if its argument is real. (Contributed
by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) |
|
Theorem | ere 11644 |
Euler's constant e = 2.71828... is a real number.
(Contributed by
NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
|
⊢ e ∈ ℝ |
|
Theorem | ege2le3 11645 |
Euler's constant e = 2.71828... is bounded by 2 and 3.
(Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 /
2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤
3) |
|
Theorem | ef0 11646 |
Value of the exponential function at 0. Equation 2 of [Gleason] p. 308.
(Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
⊢ (exp‘0) = 1 |
|
Theorem | efcj 11647 |
The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308.
(Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |
|
Theorem | efaddlem 11648* |
Lemma for efadd 11649 (exponential function addition law).
(Contributed by
Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
|
Theorem | efadd 11649 |
Sum of exponents law for exponential function. (Contributed by NM,
10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
|
Theorem | efcan 11650 |
Cancellation law for exponential function. Equation 27 of [Rudin] p. 164.
(Contributed by NM, 13-Jan-2006.)
|
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) |
|
Theorem | efap0 11651 |
The exponential of a complex number is apart from zero. (Contributed by
Jim Kingdon, 12-Dec-2022.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) # 0) |
|
Theorem | efne0 11652 |
The exponential of a complex number is nonzero. Corollary 15-4.3 of
[Gleason] p. 309. The same result also
holds with not equal replaced by
apart, as seen at efap0 11651 (which will be more useful in most
contexts).
(Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) |
|
Theorem | efneg 11653 |
The exponential of the opposite is the inverse of the exponential.
(Contributed by Mario Carneiro, 10-May-2014.)
|
⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) |
|
Theorem | eff2 11654 |
The exponential function maps the complex numbers to the nonzero complex
numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
|
⊢ exp:ℂ⟶(ℂ ∖
{0}) |
|
Theorem | efsub 11655 |
Difference of exponents law for exponential function. (Contributed by
Steve Rodriguez, 25-Nov-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
|
Theorem | efexp 11656 |
The exponential of an integer power. Corollary 15-4.4 of [Gleason]
p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.)
(Revised by Mario Carneiro, 5-Jun-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) |
|
Theorem | efzval 11657 |
Value of the exponential function for integers. Special case of efval 11635.
Equation 30 of [Rudin] p. 164. (Contributed
by Steve Rodriguez,
15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
|
⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) |
|
Theorem | efgt0 11658 |
The exponential of a real number is greater than 0. (Contributed by Paul
Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ → 0 <
(exp‘𝐴)) |
|
Theorem | rpefcl 11659 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ+) |
|
Theorem | rpefcld 11660 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈
ℝ+) |
|
Theorem | eftlcvg 11661* |
The tail series of the exponential function are convergent.
(Contributed by Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
seq𝑀( + , 𝐹) ∈ dom ⇝
) |
|
Theorem | eftlcl 11662* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
|
Theorem | reeftlcl 11663* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
|
Theorem | eftlub 11664* |
An upper bound on the absolute value of the infinite tail of the series
expansion of the exponential function on the closed unit disk.
(Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario
Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦
((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤
1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) |
|
Theorem | efsep 11665* |
Separate out the next term of the power series expansion of the
exponential function. The last hypothesis allows the separated terms to
be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈
ℕ0
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
|
Theorem | effsumlt 11666* |
The partial sums of the series expansion of the exponential function at
a positive real number are bounded by the value of the function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
|
Theorem | eft0val 11667 |
The value of the first term of the series expansion of the exponential
function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by
Mario Carneiro, 29-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
|
Theorem | ef4p 11668* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
|
Theorem | efgt1p2 11669 |
The exponential of a positive real number is greater than the sum of the
first three terms of the series expansion. (Contributed by Mario
Carneiro, 15-Sep-2014.)
|
⊢ (𝐴 ∈ ℝ+ → ((1 +
𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
|
Theorem | efgt1p 11670 |
The exponential of a positive real number is greater than 1 plus that
number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by
Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ+ → (1 +
𝐴) < (exp‘𝐴)) |
|
Theorem | efgt1 11671 |
The exponential of a positive real number is greater than 1.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ+ → 1 <
(exp‘𝐴)) |
|
Theorem | efltim 11672 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
20-Dec-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) |
|
Theorem | reef11 11673 |
The exponential function on real numbers is one-to-one. (Contributed by
NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) |
|
Theorem | reeff1 11674 |
The exponential function maps real arguments one-to-one to positive
reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by
Mario Carneiro, 10-Nov-2013.)
|
⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
|
Theorem | eflegeo 11675 |
The exponential function on the reals between 0 and 1 lies below the
comparable geometric series sum. (Contributed by Paul Chapman,
11-Sep-2007.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
|
Theorem | sinval 11676 |
Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised
by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (2
· i))) |
|
Theorem | cosval 11677 |
Value of the cosine function. (Contributed by NM, 14-Mar-2005.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i ·
𝐴)) + (exp‘(-i
· 𝐴))) /
2)) |
|
Theorem | sinf 11678 |
Domain and codomain of the sine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ sin:ℂ⟶ℂ |
|
Theorem | cosf 11679 |
Domain and codomain of the cosine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ cos:ℂ⟶ℂ |
|
Theorem | sincl 11680 |
Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised
by Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈
ℂ) |
|
Theorem | coscl 11681 |
Closure of the cosine function with a complex argument. (Contributed by
NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈
ℂ) |
|
Theorem | tanvalap 11682 |
Value of the tangent function. (Contributed by Mario Carneiro,
14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
|
Theorem | tanclap 11683 |
The closure of the tangent function with a complex argument. (Contributed
by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon,
21-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℂ) |
|
Theorem | sincld 11684 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) |
|
Theorem | coscld 11685 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) |
|
Theorem | tanclapd 11686 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) |
|
Theorem | tanval2ap 11687 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (i
· ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) |
|
Theorem | tanval3ap 11688 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2
· (i · 𝐴)))
+ 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i ·
𝐴))) − 1) / (i
· ((exp‘(2 · (i · 𝐴))) + 1)))) |
|
Theorem | resinval 11689 |
The sine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) =
(ℑ‘(exp‘(i · 𝐴)))) |
|
Theorem | recosval 11690 |
The cosine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i
· 𝐴)))) |
|
Theorem | efi4p 11691* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) = (((1
− ((𝐴↑2) / 2))
+ (i · (𝐴 −
((𝐴↑3) / 6)))) +
Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
|
Theorem | resin4p 11692* |
Separate out the first four terms of the infinite series expansion of
the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) +
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
|
Theorem | recos4p 11693* |
Separate out the first four terms of the infinite series expansion of
the cosine of a real number. (Contributed by Paul Chapman,
19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
|
Theorem | resincl 11694 |
The sine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈
ℝ) |
|
Theorem | recoscl 11695 |
The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈
ℝ) |
|
Theorem | retanclap 11696 |
The closure of the tangent function with a real argument. (Contributed by
David A. Wheeler, 15-Mar-2014.)
|
⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℝ) |
|
Theorem | resincld 11697 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) |
|
Theorem | recoscld 11698 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) |
|
Theorem | retanclapd 11699 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) |
|
Theorem | sinneg 11700 |
The sine of a negative is the negative of the sine. (Contributed by NM,
30-Apr-2005.)
|
⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |