Theorem List for Intuitionistic Logic Explorer - 11601-11700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | sqsqrti 11601 |
Square of square root. (Contributed by NM, 11-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) |
| |
| Theorem | sqrtge0i 11602 |
The square root of a nonnegative real is nonnegative. (Contributed by
NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) |
| |
| Theorem | absidi 11603 |
A nonnegative number is its own absolute value. (Contributed by NM,
2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) |
| |
| Theorem | absnidi 11604 |
A negative number is the negative of its own absolute value.
(Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) |
| |
| Theorem | leabsi 11605 |
A real number is less than or equal to its absolute value. (Contributed
by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ 𝐴 ≤ (abs‘𝐴) |
| |
| Theorem | absrei 11606 |
Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) |
| |
| Theorem | sqrtpclii 11607 |
The square root of a positive real is a real. (Contributed by Mario
Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈
ℝ |
| |
| Theorem | sqrtgt0ii 11608 |
The square root of a positive real is positive. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) |
| |
| Theorem | sqrt11i 11609 |
The square root function is one-to-one. (Contributed by NM,
27-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | sqrtmuli 11610 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
| |
| Theorem | sqrtmulii 11611 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 ≤ 𝐴 & ⊢ 0 ≤ 𝐵 ⇒ ⊢ (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)) |
| |
| Theorem | sqrtmsq2i 11612 |
Relationship between square root and squares. (Contributed by NM,
31-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐵))) |
| |
| Theorem | sqrtlei 11613 |
Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
| |
| Theorem | sqrtlti 11614 |
Square root is strictly monotonic. (Contributed by Roy F. Longton,
8-Aug-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
| |
| Theorem | abslti 11615 |
Absolute value and 'less than' relation. (Contributed by NM,
6-Apr-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵)) |
| |
| Theorem | abslei 11616 |
Absolute value and 'less than or equal to' relation. (Contributed by
NM, 6-Apr-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
| |
| Theorem | absvalsqi 11617 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)) |
| |
| Theorem | absvalsq2i 11618 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)) |
| |
| Theorem | abscli 11619 |
Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) ∈ ℝ |
| |
| Theorem | absge0i 11620 |
Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ 0 ≤ (abs‘𝐴) |
| |
| Theorem | absval2i 11621 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
| |
| Theorem | abs00i 11622 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by NM,
28-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴) = 0 ↔ 𝐴 = 0) |
| |
| Theorem | absgt0api 11623 |
The absolute value of a nonzero number is positive. Remark in [Apostol]
p. 363. (Contributed by NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 ↔ 0 < (abs‘𝐴)) |
| |
| Theorem | absnegi 11624 |
Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘-𝐴) = (abs‘𝐴) |
| |
| Theorem | abscji 11625 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢
(abs‘(∗‘𝐴)) = (abs‘𝐴) |
| |
| Theorem | releabsi 11626 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (ℜ‘𝐴) ≤ (abs‘𝐴) |
| |
| Theorem | abssubi 11627 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴)) |
| |
| Theorem | absmuli 11628 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)) |
| |
| Theorem | sqabsaddi 11629 |
Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason]
p. 133. (Contributed by NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
| |
| Theorem | sqabssubi 11630 |
Square of absolute value of difference. (Contributed by Steve
Rodriguez, 20-Jan-2007.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
| |
| Theorem | absdivapzi 11631 |
Absolute value distributes over division. (Contributed by Jim Kingdon,
13-Aug-2021.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| |
| Theorem | abstrii 11632 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. This is Metamath 100
proof #91. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) |
| |
| Theorem | abs3difi 11633 |
Absolute value of differences around common element. (Contributed by
NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
| |
| Theorem | abs3lemi 11634 |
Lemma involving absolute value of differences. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
| |
| Theorem | rpsqrtcld 11635 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈
ℝ+) |
| |
| Theorem | sqrtgt0d 11636 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → 0 < (√‘𝐴)) |
| |
| Theorem | absnidd 11637 |
A negative number is the negative of its own absolute value.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = -𝐴) |
| |
| Theorem | leabsd 11638 |
A real number is less than or equal to its absolute value. (Contributed
by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ (abs‘𝐴)) |
| |
| Theorem | absred 11639 |
Absolute value of a real number. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) |
| |
| Theorem | resqrtcld 11640 |
The square root of a nonnegative real is a real. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
| |
| Theorem | sqrtmsqd 11641 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴) |
| |
| Theorem | sqrtsqd 11642 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
| |
| Theorem | sqrtge0d 11643 |
The square root of a nonnegative real is nonnegative. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
| |
| Theorem | absidd 11644 |
A nonnegative number is its own absolute value. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
| |
| Theorem | sqrtdivd 11645 |
Square root distributes over division. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
| |
| Theorem | sqrtmuld 11646 |
Square root distributes over multiplication. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
| |
| Theorem | sqrtsq2d 11647 |
Relationship between square root and squares. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) |
| |
| Theorem | sqrtled 11648 |
Square root is monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
| |
| Theorem | sqrtltd 11649 |
Square root is strictly monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
| |
| Theorem | sqr11d 11650 |
The square root function is one-to-one. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵)
& ⊢ (𝜑 → (√‘𝐴) = (√‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | absltd 11651 |
Absolute value and 'less than' relation. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
| |
| Theorem | absled 11652 |
Absolute value and 'less than or equal to' relation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| |
| Theorem | abssubge0d 11653 |
Absolute value of a nonnegative difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
| |
| Theorem | abssuble0d 11654 |
Absolute value of a nonpositive difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
| |
| Theorem | absdifltd 11655 |
The absolute value of a difference and 'less than' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) |
| |
| Theorem | absdifled 11656 |
The absolute value of a difference and 'less than or equal to' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) |
| |
| Theorem | icodiamlt 11657 |
Two elements in a half-open interval have separation strictly less than
the difference between the endpoints. (Contributed by Stefan O'Rear,
12-Sep-2014.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶 − 𝐷)) < (𝐵 − 𝐴)) |
| |
| Theorem | abscld 11658 |
Real closure of absolute value. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| |
| Theorem | absvalsqd 11659 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
| |
| Theorem | absvalsq2d 11660 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
| |
| Theorem | absge0d 11661 |
Absolute value is nonnegative. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
| |
| Theorem | absval2d 11662 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)))) |
| |
| Theorem | abs00d 11663 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) = 0)
⇒ ⊢ (𝜑 → 𝐴 = 0) |
| |
| Theorem | absne0d 11664 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≠ 0) |
| |
| Theorem | absrpclapd 11665 |
The absolute value of a complex number apart from zero is a positive
real. (Contributed by Jim Kingdon, 13-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ∈
ℝ+) |
| |
| Theorem | absnegd 11666 |
Absolute value of negative. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘-𝐴) = (abs‘𝐴)) |
| |
| Theorem | abscjd 11667 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
| |
| Theorem | releabsd 11668 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
| |
| Theorem | absexpd 11669 |
Absolute value of positive integer exponentiation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
| |
| Theorem | abssubd 11670 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| |
| Theorem | absmuld 11671 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
| |
| Theorem | absdivapd 11672 |
Absolute value distributes over division. (Contributed by Jim
Kingdon, 13-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| |
| Theorem | abstrid 11673 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
| |
| Theorem | abs2difd 11674 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | abs2dif2d 11675 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
| |
| Theorem | abs2difabsd 11676 |
Absolute value of difference of absolute values. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | abs3difd 11677 |
Absolute value of differences around common element. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) |
| |
| Theorem | abs3lemd 11678 |
Lemma involving absolute value of differences. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < (𝐷 / 2)) & ⊢ (𝜑 → (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < 𝐷) |
| |
| Theorem | qdenre 11679* |
The rational numbers are dense in ℝ: any real
number can be
approximated with arbitrary precision by a rational number. For order
theoretic density, see qbtwnre 10443. (Contributed by BJ, 15-Oct-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) →
∃𝑥 ∈ ℚ
(abs‘(𝑥 −
𝐴)) < 𝐵) |
| |
| 4.8.5 The maximum of two real
numbers
|
| |
| Theorem | maxcom 11680 |
The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
| ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
| |
| Theorem | maxabsle 11681 |
An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon,
20-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
| |
| Theorem | maxleim 11682 |
Value of maximum when we know which number is larger. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
| |
| Theorem | maxabslemab 11683 |
Lemma for maxabs 11686. A variation of maxleim 11682- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) = 𝐵) |
| |
| Theorem | maxabslemlub 11684 |
Lemma for maxabs 11686. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
| |
| Theorem | maxabslemval 11685* |
Lemma for maxabs 11686. Value of the supremum. (Contributed by
Jim
Kingdon, 22-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |
| |
| Theorem | maxabs 11686 |
Maximum of two real numbers in terms of absolute value. (Contributed by
Jim Kingdon, 20-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
| |
| Theorem | maxcl 11687 |
The maximum of two real numbers is a real number. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
| |
| Theorem | maxle1 11688 |
The maximum of two reals is no smaller than the first real. Lemma 3.10 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
| |
| Theorem | maxle2 11689 |
The maximum of two reals is no smaller than the second real. Lemma 3.10
of [Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
| |
| Theorem | maxleast 11690 |
The maximum of two reals is a least upper bound. Lemma 3.11 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶) |
| |
| Theorem | maxleastb 11691 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Jim Kingdon, 31-Jan-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| |
| Theorem | maxleastlt 11692 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
| |
| Theorem | maxleb 11693 |
Equivalence of ≤ and being equal to the maximum of
two reals. Lemma
3.12 of [Geuvers], p. 10. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
| |
| Theorem | dfabsmax 11694 |
Absolute value of a real number in terms of maximum. Definition 3.13 of
[Geuvers], p. 11. (Contributed by BJ and
Jim Kingdon, 21-Dec-2021.)
|
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
| |
| Theorem | maxltsup 11695 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 10-Feb-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
| |
| Theorem | max0addsup 11696 |
The sum of the positive and negative part functions is the absolute value
function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
|
| ⊢ (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) +
sup({-𝐴, 0}, ℝ, <
)) = (abs‘𝐴)) |
| |
| Theorem | rexanre 11697* |
Combine two different upper real properties into one. (Contributed by
Mario Carneiro, 8-May-2016.)
|
| ⊢ (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) |
| |
| Theorem | rexico 11698* |
Restrict the base of an upper real quantifier to an upper real set.
(Contributed by Mario Carneiro, 12-May-2016.)
|
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| |
| Theorem | maxclpr 11699 |
The maximum of two real numbers is one of those numbers if and only if
dichotomy (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) holds. For example, this can be
combined with zletric 9458 if one is dealing with integers, but real
number
dichotomy in general does not follow from our axioms. (Contributed by Jim
Kingdon, 1-Feb-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |
| |
| Theorem | rpmaxcl 11700 |
The maximum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 10-Nov-2023.)
|
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ+) |