![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tanvalap | GIF version |
Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.) |
Ref | Expression |
---|---|
tanvalap | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ ℂ) | |
2 | coscl 11853 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ∈ ℂ) |
4 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) # 0) | |
5 | 0cnd 8014 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 0 ∈ ℂ) | |
6 | apne 8644 | . . . . . 6 ⊢ (((cos‘𝐴) ∈ ℂ ∧ 0 ∈ ℂ) → ((cos‘𝐴) # 0 → (cos‘𝐴) ≠ 0)) | |
7 | 3, 5, 6 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((cos‘𝐴) # 0 → (cos‘𝐴) ≠ 0)) |
8 | 4, 7 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ≠ 0) |
9 | eldifsn 3746 | . . . 4 ⊢ ((cos‘𝐴) ∈ (ℂ ∖ {0}) ↔ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) | |
10 | 3, 8, 9 | sylanbrc 417 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ∈ (ℂ ∖ {0})) |
11 | cosf 11851 | . . . 4 ⊢ cos:ℂ⟶ℂ | |
12 | ffn 5404 | . . . 4 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
13 | elpreima 5678 | . . . 4 ⊢ (cos Fn ℂ → (𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0})))) | |
14 | 11, 12, 13 | mp2b 8 | . . 3 ⊢ (𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0}))) |
15 | 1, 10, 14 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ (◡cos “ (ℂ ∖ {0}))) |
16 | sincl 11852 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
17 | 16 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (sin‘𝐴) ∈ ℂ) |
18 | 17, 3, 4 | divclapd 8811 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((sin‘𝐴) / (cos‘𝐴)) ∈ ℂ) |
19 | fveq2 5555 | . . . 4 ⊢ (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴)) | |
20 | fveq2 5555 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
21 | 19, 20 | oveq12d 5937 | . . 3 ⊢ (𝑥 = 𝐴 → ((sin‘𝑥) / (cos‘𝑥)) = ((sin‘𝐴) / (cos‘𝐴))) |
22 | df-tan 11798 | . . 3 ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | |
23 | 21, 22 | fvmptg 5634 | . 2 ⊢ ((𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ∧ ((sin‘𝐴) / (cos‘𝐴)) ∈ ℂ) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
24 | 15, 18, 23 | syl2anc 411 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∖ cdif 3151 {csn 3619 class class class wbr 4030 ◡ccnv 4659 “ cima 4663 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 0cc0 7874 # cap 8602 / cdiv 8693 sincsin 11790 cosccos 11791 tanctan 11792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-ico 9963 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-sin 11796 df-cos 11797 df-tan 11798 |
This theorem is referenced by: tanclap 11855 tanval2ap 11859 retanclap 11868 tannegap 11874 tan0 11877 tanaddaplem 11884 tanaddap 11885 tanrpcl 15013 tangtx 15014 tan4thpi 15017 |
Copyright terms: Public domain | W3C validator |