Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tanvalap | GIF version |
Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.) |
Ref | Expression |
---|---|
tanvalap | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ ℂ) | |
2 | coscl 11638 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
3 | 2 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ∈ ℂ) |
4 | simpr 109 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) # 0) | |
5 | 0cnd 7884 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 0 ∈ ℂ) | |
6 | apne 8513 | . . . . . 6 ⊢ (((cos‘𝐴) ∈ ℂ ∧ 0 ∈ ℂ) → ((cos‘𝐴) # 0 → (cos‘𝐴) ≠ 0)) | |
7 | 3, 5, 6 | syl2anc 409 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((cos‘𝐴) # 0 → (cos‘𝐴) ≠ 0)) |
8 | 4, 7 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ≠ 0) |
9 | eldifsn 3698 | . . . 4 ⊢ ((cos‘𝐴) ∈ (ℂ ∖ {0}) ↔ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) | |
10 | 3, 8, 9 | sylanbrc 414 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ∈ (ℂ ∖ {0})) |
11 | cosf 11636 | . . . 4 ⊢ cos:ℂ⟶ℂ | |
12 | ffn 5332 | . . . 4 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
13 | elpreima 5599 | . . . 4 ⊢ (cos Fn ℂ → (𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0})))) | |
14 | 11, 12, 13 | mp2b 8 | . . 3 ⊢ (𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0}))) |
15 | 1, 10, 14 | sylanbrc 414 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ (◡cos “ (ℂ ∖ {0}))) |
16 | sincl 11637 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
17 | 16 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (sin‘𝐴) ∈ ℂ) |
18 | 17, 3, 4 | divclapd 8678 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((sin‘𝐴) / (cos‘𝐴)) ∈ ℂ) |
19 | fveq2 5481 | . . . 4 ⊢ (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴)) | |
20 | fveq2 5481 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
21 | 19, 20 | oveq12d 5855 | . . 3 ⊢ (𝑥 = 𝐴 → ((sin‘𝑥) / (cos‘𝑥)) = ((sin‘𝐴) / (cos‘𝐴))) |
22 | df-tan 11583 | . . 3 ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | |
23 | 21, 22 | fvmptg 5557 | . 2 ⊢ ((𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ∧ ((sin‘𝐴) / (cos‘𝐴)) ∈ ℂ) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
24 | 15, 18, 23 | syl2anc 409 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1342 ∈ wcel 2135 ≠ wne 2334 ∖ cdif 3109 {csn 3571 class class class wbr 3977 ◡ccnv 4598 “ cima 4602 Fn wfn 5178 ⟶wf 5179 ‘cfv 5183 (class class class)co 5837 ℂcc 7743 0cc0 7745 # cap 8471 / cdiv 8560 sincsin 11575 cosccos 11576 tanctan 11577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 ax-arch 7864 ax-caucvg 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-if 3517 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-po 4269 df-iso 4270 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-isom 5192 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-recs 6265 df-irdg 6330 df-frec 6351 df-1o 6376 df-oadd 6380 df-er 6493 df-en 6699 df-dom 6700 df-fin 6701 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-inn 8850 df-2 8908 df-3 8909 df-4 8910 df-n0 9107 df-z 9184 df-uz 9459 df-q 9550 df-rp 9582 df-ico 9822 df-fz 9937 df-fzo 10069 df-seqfrec 10372 df-exp 10446 df-fac 10629 df-ihash 10679 df-cj 10774 df-re 10775 df-im 10776 df-rsqrt 10930 df-abs 10931 df-clim 11210 df-sumdc 11285 df-ef 11579 df-sin 11581 df-cos 11582 df-tan 11583 |
This theorem is referenced by: tanclap 11640 tanval2ap 11644 retanclap 11653 tannegap 11659 tan0 11662 tanaddaplem 11669 tanaddap 11670 tanrpcl 13325 tangtx 13326 tan4thpi 13329 |
Copyright terms: Public domain | W3C validator |