ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanvalap GIF version

Theorem tanvalap 11938
Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
Assertion
Ref Expression
tanvalap ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))

Proof of Theorem tanvalap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ ℂ)
2 coscl 11937 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
32adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ∈ ℂ)
4 simpr 110 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) # 0)
5 0cnd 8047 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 0 ∈ ℂ)
6 apne 8678 . . . . . 6 (((cos‘𝐴) ∈ ℂ ∧ 0 ∈ ℂ) → ((cos‘𝐴) # 0 → (cos‘𝐴) ≠ 0))
73, 5, 6syl2anc 411 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((cos‘𝐴) # 0 → (cos‘𝐴) ≠ 0))
84, 7mpd 13 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ≠ 0)
9 eldifsn 3759 . . . 4 ((cos‘𝐴) ∈ (ℂ ∖ {0}) ↔ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0))
103, 8, 9sylanbrc 417 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) ∈ (ℂ ∖ {0}))
11 cosf 11935 . . . 4 cos:ℂ⟶ℂ
12 ffn 5419 . . . 4 (cos:ℂ⟶ℂ → cos Fn ℂ)
13 elpreima 5693 . . . 4 (cos Fn ℂ → (𝐴 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0}))))
1411, 12, 13mp2b 8 . . 3 (𝐴 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0})))
151, 10, 14sylanbrc 417 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ (cos “ (ℂ ∖ {0})))
16 sincl 11936 . . . 4 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
1716adantr 276 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (sin‘𝐴) ∈ ℂ)
1817, 3, 4divclapd 8845 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((sin‘𝐴) / (cos‘𝐴)) ∈ ℂ)
19 fveq2 5570 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
20 fveq2 5570 . . . 4 (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴))
2119, 20oveq12d 5952 . . 3 (𝑥 = 𝐴 → ((sin‘𝑥) / (cos‘𝑥)) = ((sin‘𝐴) / (cos‘𝐴)))
22 df-tan 11882 . . 3 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
2321, 22fvmptg 5649 . 2 ((𝐴 ∈ (cos “ (ℂ ∖ {0})) ∧ ((sin‘𝐴) / (cos‘𝐴)) ∈ ℂ) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2415, 18, 23syl2anc 411 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wne 2375  cdif 3162  {csn 3632   class class class wbr 4043  ccnv 4672  cima 4676   Fn wfn 5263  wf 5264  cfv 5268  (class class class)co 5934  cc 7905  0cc0 7907   # cap 8636   / cdiv 8727  sincsin 11874  cosccos 11875  tanctan 11876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-ico 9998  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-fac 10852  df-ihash 10902  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584  df-ef 11878  df-sin 11880  df-cos 11881  df-tan 11882
This theorem is referenced by:  tanclap  11939  tanval2ap  11943  retanclap  11952  tannegap  11958  tan0  11961  tanaddaplem  11968  tanaddap  11969  tanrpcl  15227  tangtx  15228  tan4thpi  15231
  Copyright terms: Public domain W3C validator