Detailed syntax breakdown of Definition df-tms
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ctms 14574 | 
. 2
class
toMetSp | 
| 2 |   | vd | 
. . 3
setvar 𝑑 | 
| 3 |   | cxmet 14092 | 
. . . . 5
class
∞Met | 
| 4 | 3 | crn 4664 | 
. . . 4
class ran
∞Met | 
| 5 | 4 | cuni 3839 | 
. . 3
class ∪ ran ∞Met | 
| 6 |   | cnx 12675 | 
. . . . . . 7
class
ndx | 
| 7 |   | cbs 12678 | 
. . . . . . 7
class
Base | 
| 8 | 6, 7 | cfv 5258 | 
. . . . . 6
class
(Base‘ndx) | 
| 9 | 2 | cv 1363 | 
. . . . . . . 8
class 𝑑 | 
| 10 | 9 | cdm 4663 | 
. . . . . . 7
class dom 𝑑 | 
| 11 | 10 | cdm 4663 | 
. . . . . 6
class dom dom
𝑑 | 
| 12 | 8, 11 | cop 3625 | 
. . . . 5
class
〈(Base‘ndx), dom dom 𝑑〉 | 
| 13 |   | cds 12764 | 
. . . . . . 7
class
dist | 
| 14 | 6, 13 | cfv 5258 | 
. . . . . 6
class
(dist‘ndx) | 
| 15 | 14, 9 | cop 3625 | 
. . . . 5
class
〈(dist‘ndx), 𝑑〉 | 
| 16 | 12, 15 | cpr 3623 | 
. . . 4
class
{〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} | 
| 17 |   | cts 12761 | 
. . . . . 6
class
TopSet | 
| 18 | 6, 17 | cfv 5258 | 
. . . . 5
class
(TopSet‘ndx) | 
| 19 |   | cmopn 14097 | 
. . . . . 6
class
MetOpen | 
| 20 | 9, 19 | cfv 5258 | 
. . . . 5
class
(MetOpen‘𝑑) | 
| 21 | 18, 20 | cop 3625 | 
. . . 4
class
〈(TopSet‘ndx), (MetOpen‘𝑑)〉 | 
| 22 |   | csts 12676 | 
. . . 4
class 
sSet | 
| 23 | 16, 21, 22 | co 5922 | 
. . 3
class
({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet
〈(TopSet‘ndx), (MetOpen‘𝑑)〉) | 
| 24 | 2, 5, 23 | cmpt 4094 | 
. 2
class (𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom
𝑑〉,
〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx),
(MetOpen‘𝑑)〉)) | 
| 25 | 1, 24 | wceq 1364 | 
1
wff toMetSp =
(𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom
𝑑〉,
〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx),
(MetOpen‘𝑑)〉)) |