Detailed syntax breakdown of Definition df-tms
Step | Hyp | Ref
| Expression |
1 | | ctms 12988 |
. 2
class
toMetSp |
2 | | vd |
. . 3
setvar 𝑑 |
3 | | cxmet 12630 |
. . . . 5
class
∞Met |
4 | 3 | crn 4605 |
. . . 4
class ran
∞Met |
5 | 4 | cuni 3789 |
. . 3
class ∪ ran ∞Met |
6 | | cnx 12391 |
. . . . . . 7
class
ndx |
7 | | cbs 12394 |
. . . . . . 7
class
Base |
8 | 6, 7 | cfv 5188 |
. . . . . 6
class
(Base‘ndx) |
9 | 2 | cv 1342 |
. . . . . . . 8
class 𝑑 |
10 | 9 | cdm 4604 |
. . . . . . 7
class dom 𝑑 |
11 | 10 | cdm 4604 |
. . . . . 6
class dom dom
𝑑 |
12 | 8, 11 | cop 3579 |
. . . . 5
class
〈(Base‘ndx), dom dom 𝑑〉 |
13 | | cds 12466 |
. . . . . . 7
class
dist |
14 | 6, 13 | cfv 5188 |
. . . . . 6
class
(dist‘ndx) |
15 | 14, 9 | cop 3579 |
. . . . 5
class
〈(dist‘ndx), 𝑑〉 |
16 | 12, 15 | cpr 3577 |
. . . 4
class
{〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} |
17 | | cts 12463 |
. . . . . 6
class
TopSet |
18 | 6, 17 | cfv 5188 |
. . . . 5
class
(TopSet‘ndx) |
19 | | cmopn 12635 |
. . . . . 6
class
MetOpen |
20 | 9, 19 | cfv 5188 |
. . . . 5
class
(MetOpen‘𝑑) |
21 | 18, 20 | cop 3579 |
. . . 4
class
〈(TopSet‘ndx), (MetOpen‘𝑑)〉 |
22 | | csts 12392 |
. . . 4
class
sSet |
23 | 16, 21, 22 | co 5842 |
. . 3
class
({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet
〈(TopSet‘ndx), (MetOpen‘𝑑)〉) |
24 | 2, 5, 23 | cmpt 4043 |
. 2
class (𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom
𝑑〉,
〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx),
(MetOpen‘𝑑)〉)) |
25 | 1, 24 | wceq 1343 |
1
wff toMetSp =
(𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom
𝑑〉,
〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx),
(MetOpen‘𝑑)〉)) |