![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > metrel | GIF version |
Description: The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) |
Ref | Expression |
---|---|
metrel | ⊢ Rel Met |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4791 | . 2 ⊢ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | |
2 | df-met 14044 | . . 3 ⊢ Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | |
3 | 2 | releqi 4743 | . 2 ⊢ (Rel Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})) |
4 | 1, 3 | mpbir 146 | 1 ⊢ Rel Met |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∀wral 2472 {crab 2476 Vcvv 2760 class class class wbr 4030 ↦ cmpt 4091 × cxp 4658 Rel wrel 4665 (class class class)co 5919 ↑𝑚 cmap 6704 ℝcr 7873 0cc0 7874 + caddc 7877 ≤ cle 8057 Metcmet 14036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-mpt 4093 df-xp 4666 df-rel 4667 df-met 14044 |
This theorem is referenced by: metflem 14528 ismet2 14533 |
Copyright terms: Public domain | W3C validator |