ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrel GIF version

Theorem metrel 12982
Description: The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
metrel Rel Met

Proof of Theorem metrel
Dummy variables 𝑒 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4732 . 2 Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
2 df-met 12629 . . 3 Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
32releqi 4687 . 2 (Rel Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}))
41, 3mpbir 145 1 Rel Met
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wral 2444  {crab 2448  Vcvv 2726   class class class wbr 3982  cmpt 4043   × cxp 4602  Rel wrel 4609  (class class class)co 5842  𝑚 cmap 6614  cr 7752  0cc0 7753   + caddc 7756  cle 7934  Metcmet 12621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-met 12629
This theorem is referenced by:  metflem  12989  ismet2  12994
  Copyright terms: Public domain W3C validator