| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metrel | GIF version | ||
| Description: The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) |
| Ref | Expression |
|---|---|
| metrel | ⊢ Rel Met |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4810 | . 2 ⊢ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | |
| 2 | df-met 14351 | . . 3 ⊢ Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | |
| 3 | 2 | releqi 4762 | . 2 ⊢ (Rel Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Rel Met |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∀wral 2485 {crab 2489 Vcvv 2773 class class class wbr 4047 ↦ cmpt 4109 × cxp 4677 Rel wrel 4684 (class class class)co 5951 ↑𝑚 cmap 6742 ℝcr 7931 0cc0 7932 + caddc 7935 ≤ cle 8115 Metcmet 14343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-opab 4110 df-mpt 4111 df-xp 4685 df-rel 4686 df-met 14351 |
| This theorem is referenced by: metflem 14865 ismet2 14870 |
| Copyright terms: Public domain | W3C validator |