ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrel GIF version

Theorem metrel 14858
Description: The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
metrel Rel Met

Proof of Theorem metrel
Dummy variables 𝑒 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4810 . 2 Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
2 df-met 14351 . . 3 Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
32releqi 4762 . 2 (Rel Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}))
41, 3mpbir 146 1 Rel Met
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wral 2485  {crab 2489  Vcvv 2773   class class class wbr 4047  cmpt 4109   × cxp 4677  Rel wrel 4684  (class class class)co 5951  𝑚 cmap 6742  cr 7931  0cc0 7932   + caddc 7935  cle 8115  Metcmet 14343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-opab 4110  df-mpt 4111  df-xp 4685  df-rel 4686  df-met 14351
This theorem is referenced by:  metflem  14865  ismet2  14870
  Copyright terms: Public domain W3C validator