| Intuitionistic Logic Explorer Theorem List (p. 139 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isrim 13801 | An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
| Theorem | rimf1o 13802 | An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Theorem | rimrhm 13803 | A ring isomorphism is a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove hypotheses. (Revised by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | rhmfn 13804 | The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
| ⊢ RingHom Fn (Ring × Ring) | ||
| Theorem | rhmval 13805 | The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | ||
| Theorem | rhmco 13806 | The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) | ||
| Theorem | rhmdvdsr 13807 | A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ / = (∥r‘𝑆) ⇒ ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) | ||
| Theorem | rhmopp 13808 | A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom (oppr‘𝑆))) | ||
| Theorem | elrhmunit 13809 | Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) | ||
| Theorem | rhmunitinv 13810 | Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴))) | ||
| Syntax | cnzr 13811 | The class of nonzero rings. |
| class NzRing | ||
| Definition | df-nzr 13812 | A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | ||
| Theorem | isnzr 13813 | Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) | ||
| Theorem | nzrnz 13814 | One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) | ||
| Theorem | nzrring 13815 | A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | ||
| Theorem | isnzr2 13816 | Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) | ||
| Theorem | opprnzrbg 13817 | The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 13818. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing)) | ||
| Theorem | opprnzr 13818 | The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑂 ∈ NzRing) | ||
| Theorem | ringelnzr 13819 | A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) | ||
| Theorem | nzrunit 13820 | A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) | ||
| Theorem | 01eq0ring 13821 | If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) | ||
| Syntax | clring 13822 | Extend class notation with class of all local rings. |
| class LRing | ||
| Definition | df-lring 13823* | A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | ||
| Theorem | islring 13824* | The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
| Theorem | lringnzr 13825 | A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | ||
| Theorem | lringring 13826 | A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) | ||
| Theorem | lringnz 13827 | A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) | ||
| Theorem | lringuplu 13828 | If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ LRing) & ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
| Syntax | csubrng 13829 | Extend class notation with all subrings of a non-unital ring. |
| class SubRng | ||
| Definition | df-subrng 13830* | Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.) |
| ⊢ SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Rng}) | ||
| Theorem | issubrng 13831 | The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) | ||
| Theorem | subrngss 13832 | A subring is a subset. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrngid 13833 | Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngrng 13834 | A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) | ||
| Theorem | subrngrcl 13835 | Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | ||
| Theorem | subrngsubg 13836 | A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
| Theorem | subrngringnsg 13837 | A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) | ||
| Theorem | subrngbas 13838 | Base set of a subring structure. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | subrng0 13839 | A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 0 = (0g‘𝑆)) | ||
| Theorem | subrngacl 13840 | A subring is closed under addition. (Contributed by AV, 14-Feb-2025.) |
| ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
| Theorem | subrngmcl 13841 | A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 13865. (Revised by AV, 14-Feb-2025.) |
| ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | issubrng2 13842* | Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | opprsubrngg 13843 | Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) | ||
| Theorem | subrngintm 13844* | The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗 ∈ 𝑆) → ∩ 𝑆 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngin 13845 | The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRng‘𝑅)) | ||
| Theorem | subsubrng 13846 | A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrng2 13847 | The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | subrngpropd 13848* | If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿)) | ||
| Syntax | csubrg 13849 | Extend class notation with all subrings of a ring. |
| class SubRing | ||
| Syntax | crgspn 13850 | Extend class notation with span of a set of elements over a ring. |
| class RingSpan | ||
| Definition | df-subrg 13851* |
Define a subring of a ring as a set of elements that is a ring in its
own right and contains the multiplicative identity.
The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity 〈1, 0〉 which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧ (1r‘𝑤) ∈ 𝑠)}) | ||
| Definition | df-rgspn 13852* | The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | ||
| Theorem | issubrg 13853 | The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) | ||
| Theorem | subrgss 13854 | A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrgid 13855 | Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgring 13856 | A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) | ||
| Theorem | subrgcrng 13857 | A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) | ||
| Theorem | subrgrcl 13858 | Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | ||
| Theorem | subrgsubg 13859 | A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
| Theorem | subrg0 13860 | A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘𝑆)) | ||
| Theorem | subrg1cl 13861 | A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) | ||
| Theorem | subrgbas 13862 | Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | subrg1 13863 | A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) | ||
| Theorem | subrgacl 13864 | A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
| Theorem | subrgmcl 13865 | A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | subrgsubm 13866 | A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) | ||
| Theorem | subrgdvds 13867 | If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) | ||
| Theorem | subrguss 13868 | A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) | ||
| Theorem | subrginv 13869 | A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐽 = (invr‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
| Theorem | subrgdv 13870 | A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐸 = (/r‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) | ||
| Theorem | subrgunit 13871 | An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴))) | ||
| Theorem | subrgugrp 13872 | The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) | ||
| Theorem | issubrg2 13873* | Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | subrgnzr 13874 | A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ NzRing) | ||
| Theorem | subrgintm 13875* | The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤 ∈ 𝑆) → ∩ 𝑆 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgin 13876 | The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRing‘𝑅)) | ||
| Theorem | subsubrg 13877 | A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrg2 13878 | The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | issubrg3 13879 | A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) | ||
| Theorem | resrhm 13880 | Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) | ||
| Theorem | resrhm2b 13881 | Restriction of the codomain of a (ring) homomorphism. resghm2b 13468 analog. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) | ||
| Theorem | rhmeql 13882 | The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) | ||
| Theorem | rhmima 13883 | The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) | ||
| Theorem | rnrhmsubrg 13884 | The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.) |
| ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁)) | ||
| Theorem | subrgpropd 13885* | If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) | ||
| Theorem | rhmpropd 13886* | Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) | ||
| Syntax | crlreg 13887 | Set of left-regular elements in a ring. |
| class RLReg | ||
| Syntax | cdomn 13888 | Class of (ring theoretic) domains. |
| class Domn | ||
| Syntax | cidom 13889 | Class of integral domains. |
| class IDomn | ||
| Definition | df-rlreg 13890* | Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | ||
| Definition | df-domn 13891* | A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} | ||
| Definition | df-idom 13892 | An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ IDomn = (CRing ∩ Domn) | ||
| Theorem | rrgmex 13893 | A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) | ||
| Theorem | rrgval 13894* | Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} | ||
| Theorem | isrrg 13895* | Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) | ||
| Theorem | rrgeq0i 13896 | Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) | ||
| Theorem | rrgeq0 13897 | Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | rrgss 13898 | Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐸 ⊆ 𝐵 | ||
| Theorem | unitrrg 13899 | Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) | ||
| Theorem | rrgnz 13900 | In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |