HomeHome Intuitionistic Logic Explorer
Theorem List (p. 139 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13801-13900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlmodvscl 13801 Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
 
Theoremscaffvalg 13802* The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
 
Theoremscafvalg 13803 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))
 
Theoremscafeqg 13804 If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = · )
 
Theoremscaffng 13805 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)       (𝑊𝑉 Fn (𝐾 × 𝐵))
 
Theoremlmodscaf 13806 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)       (𝑊 ∈ LMod → :(𝐾 × 𝐵)⟶𝐵)
 
Theoremlmodvsdi 13807 Distributive law for scalar product (left-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
 
Theoremlmodvsdir 13808 Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
 
Theoremlmodvsass 13809 Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    × = (.r𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
 
Theoremlmod0cl 13810 The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    0 = (0g𝐹)       (𝑊 ∈ LMod → 0𝐾)
 
Theoremlmod1cl 13811 The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    1 = (1r𝐹)       (𝑊 ∈ LMod → 1𝐾)
 
Theoremlmodvs1 13812 Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
 
Theoremlmod0vcl 13813 The zero vector is a vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)       (𝑊 ∈ LMod → 0𝑉)
 
Theoremlmod0vlid 13814 Left identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
 
Theoremlmod0vrid 13815 Right identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)
 
Theoremlmod0vid 13816 Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
 
Theoremlmod0vs 13817 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑂 = (0g𝐹)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
 
Theoremlmodvs0 13818 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
 
Theoremlmodvsmmulgdi 13819 Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    = (.g𝑊)    &   𝐸 = (.g𝐹)       ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
 
Theoremlmodfopnelem1 13820 Lemma 1 for lmodfopne 13822. (Contributed by AV, 2-Oct-2021.)
· = ( ·sf𝑊)    &    + = (+𝑓𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)       ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
 
Theoremlmodfopnelem2 13821 Lemma 2 for lmodfopne 13822. (Contributed by AV, 2-Oct-2021.)
· = ( ·sf𝑊)    &    + = (+𝑓𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑆)    &    1 = (1r𝑆)       ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉))
 
Theoremlmodfopne 13822 The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
· = ( ·sf𝑊)    &    + = (+𝑓𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑆)    &    1 = (1r𝑆)       ((𝑊 ∈ LMod ∧ 10 ) → +· )
 
Theoremlcomf 13823 A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &   𝐵 = (Base‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐺:𝐼𝐾)    &   (𝜑𝐻:𝐼𝐵)    &   (𝜑𝐼𝑉)       (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)
 
Theoremlmodvnegcl 13824 Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (invg𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)
 
Theoremlmodvnegid 13825 Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)    &   𝑁 = (invg𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
 
Theoremlmodvneg1 13826 Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (invg𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &    1 = (1r𝐹)    &   𝑀 = (invg𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))
 
Theoremlmodvsneg 13827 Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑁 = (invg𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑀 = (invg𝐹)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝐵)    &   (𝜑𝑅𝐾)       (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀𝑅) · 𝑋))
 
Theoremlmodvsubcl 13828 Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
 
Theoremlmodcom 13829 Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremlmodabl 13830 A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
(𝑊 ∈ LMod → 𝑊 ∈ Abel)
 
Theoremlmodcmn 13831 A left module is a commutative monoid under addition. (Contributed by NM, 7-Jan-2015.)
(𝑊 ∈ LMod → 𝑊 ∈ CMnd)
 
Theoremlmodnegadd 13832 Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑁 = (invg𝑊)    &   𝑅 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑅)    &   𝐼 = (invg𝑅)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
 
Theoremlmod4 13833 Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑍𝑉𝑈𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈)))
 
Theoremlmodvsubadd 13834 Relationship between vector subtraction and addition. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremlmodvaddsub4 13835 Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
 
Theoremlmodvpncan 13836 Addition/subtraction cancellation law for vectors. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 + 𝐵) 𝐵) = 𝐴)
 
Theoremlmodvnpcan 13837 Cancellation law for vector subtraction (Contributed by NM, 19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) + 𝐵) = 𝐴)
 
Theoremlmodvsubval2 13838 Value of vector subtraction in terms of addition. (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑁 = (invg𝐹)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((𝑁1 ) · 𝐵)))
 
Theoremlmodsubvs 13839 Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑁 = (invg𝐹)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))
 
Theoremlmodsubdi 13840 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (-g𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))
 
Theoremlmodsubdir 13841 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (-g𝑊)    &   𝑆 = (-g𝐹)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
 
Theoremlmodsubeq0 13842 If the difference between two vectors is zero, they are equal. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
 
Theoremlmodsubid 13843 Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉) → (𝐴 𝐴) = 0 )
 
Theoremlmodprop2d 13844* If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 13845 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   𝐹 = (Scalar‘𝐾)    &   𝐺 = (Scalar‘𝐿)    &   (𝜑𝑃 = (Base‘𝐹))    &   (𝜑𝑃 = (Base‘𝐺))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
 
Theoremlmodpropd 13845* If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   (𝜑𝐹 = (Scalar‘𝐾))    &   (𝜑𝐹 = (Scalar‘𝐿))    &   𝑃 = (Base‘𝐹)    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
 
Theoremrmodislmodlem 13846* Lemma for rmodislmod 13847. This is the part of the proof of rmodislmod 13847 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.)
𝑉 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = ( ·𝑠𝑅)    &   𝐹 = (Scalar‘𝑅)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)    &   (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))    &    = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))    &   𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)       ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
 
Theoremrmodislmod 13847* The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 13785 of a left module, see also islmod 13787. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
𝑉 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = ( ·𝑠𝑅)    &   𝐹 = (Scalar‘𝑅)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)    &   (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))    &    = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))    &   𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)       (𝐹 ∈ CRing → 𝐿 ∈ LMod)
 
7.5.2  Subspaces and spans in a left module
 
Syntaxclss 13848 Extend class notation with linear subspaces of a left module or left vector space.
class LSubSp
 
Definitiondf-lssm 13849* A linear subspace of a left module or left vector space is an inhabited (in contrast to non-empty for non-intuitionistic logic) subset of the base set of the left-module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013.)
LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
 
Theoremlssex 13850 Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
(𝑊𝑉 → (LSubSp‘𝑊) ∈ V)
 
Theoremlssmex 13851 If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
𝑆 = (LSubSp‘𝑊)       (𝑈𝑆𝑊 ∈ V)
 
Theoremlsssetm 13852* The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
 
Theoremislssm 13853* The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
 
Theoremislssmg 13854* The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) Use islssm 13853 instead. (New usage is discouraged.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊𝑋 → (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
 
Theoremislssmd 13855* Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
(𝜑𝐹 = (Scalar‘𝑊))    &   (𝜑𝐵 = (Base‘𝐹))    &   (𝜑𝑉 = (Base‘𝑊))    &   (𝜑+ = (+g𝑊))    &   (𝜑· = ( ·𝑠𝑊))    &   (𝜑𝑆 = (LSubSp‘𝑊))    &   (𝜑𝑈𝑉)    &   (𝜑 → ∃𝑗 𝑗𝑈)    &   ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)    &   (𝜑𝑊𝑋)       (𝜑𝑈𝑆)
 
Theoremlssssg 13856 A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊𝑋𝑈𝑆) → 𝑈𝑉)
 
Theoremlsselg 13857 A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊𝐶𝑈𝑆𝑋𝑈) → 𝑋𝑉)
 
Theoremlss1 13858 The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊 ∈ LMod → 𝑉𝑆)
 
Theoremlssuni 13859 The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LMod)       (𝜑 𝑆 = 𝑉)
 
Theoremlssclg 13860 Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)
 
Theoremlssvacl 13861 Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
+ = (+g𝑊)    &   𝑆 = (LSubSp‘𝑊)       (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
 
Theoremlssvsubcl 13862 Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
= (-g𝑊)    &   𝑆 = (LSubSp‘𝑊)       (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) ∈ 𝑈)
 
Theoremlssvancl1 13863 Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 14-May-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑉)    &   (𝜑 → ¬ 𝑌𝑈)       (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
 
Theoremlssvancl2 13864 Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑉)    &   (𝜑 → ¬ 𝑌𝑈)       (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈)
 
Theoremlss0cl 13865 The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 0𝑈)
 
Theoremlsssn0 13866 The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
 
Theoremlss0ss 13867 The zero subspace is included in every subspace. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑆) → { 0 } ⊆ 𝑋)
 
Theoremlssle0 13868 No subspace is smaller than the zero subspace. (Contributed by NM, 20-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑆) → (𝑋 ⊆ { 0 } ↔ 𝑋 = { 0 }))
 
Theoremlssvneln0 13869 A vector 𝑋 which doesn't belong to a subspace 𝑈 is nonzero. (Contributed by NM, 14-May-2015.) (Revised by AV, 19-Jul-2022.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝑆)    &   (𝜑 → ¬ 𝑋𝑈)       (𝜑𝑋0 )
 
Theoremlssneln0 13870 A vector 𝑋 which doesn't belong to a subspace 𝑈 is nonzero. (Contributed by NM, 14-May-2015.) (Revised by AV, 17-Jul-2022.) (Proof shortened by AV, 19-Jul-2022.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑 → ¬ 𝑋𝑈)       (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
 
Theoremlssvscl 13871 Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑆 = (LSubSp‘𝑊)       (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (𝑋 · 𝑌) ∈ 𝑈)
 
Theoremlssvnegcl 13872 Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝑁 = (invg𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
 
Theoremlsssubg 13873 All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.)
𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
 
Theoremlsssssubg 13874 All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝑆 = (LSubSp‘𝑊)       (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
 
Theoremislss3 13875 A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑋 = (𝑊s 𝑈)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))
 
Theoremlsslmod 13876 A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
 
Theoremlsslss 13877 The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (LSubSp‘𝑊)    &   𝑇 = (LSubSp‘𝑋)       ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))
 
Theoremislss4 13878* A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
 
Theoremlss1d 13879* One-dimensional subspace (or zero-dimensional if 𝑋 is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆)
 
Theoremlssintclm 13880* The intersection of an inhabited set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
 
Theoremlssincl 13881 The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
 
Syntaxclspn 13882 Extend class notation with span of a set of vectors.
class LSpan
 
Definitiondf-lsp 13883* Define span of a set of vectors of a left module or left vector space. (Contributed by NM, 8-Dec-2013.)
LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
 
Theoremlspfval 13884* The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
 
Theoremlspf 13885 The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)
 
Theoremlspval 13886* The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
 
Theoremlspcl 13887 The span of a set of vectors is a subspace. (Contributed by NM, 9-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ∈ 𝑆)
 
Theoremlspsncl 13888 The span of a singleton is a subspace (frequently used special case of lspcl 13887). (Contributed by NM, 17-Jul-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
 
Theoremlspprcl 13889 The span of a pair is a subspace (frequently used special case of lspcl 13887). (Contributed by NM, 11-Apr-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆)
 
Theoremlsptpcl 13890 The span of an unordered triple is a subspace (frequently used special case of lspcl 13887). (Contributed by NM, 22-May-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)       (𝜑 → (𝑁‘{𝑋, 𝑌, 𝑍}) ∈ 𝑆)
 
Theoremlspex 13891 Existence of the span of a set of vectors. (Contributed by Jim Kingdon, 25-Apr-2025.)
(𝑊𝑋 → (LSpan‘𝑊) ∈ V)
 
Theoremlspsnsubg 13892 The span of a singleton is an additive subgroup (frequently used special case of lspcl 13887). (Contributed by Mario Carneiro, 21-Apr-2016.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
 
Theoremlspid 13893 The span of a subspace is itself. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
 
Theoremlspssv 13894 A span is a set of vectors. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ⊆ 𝑉)
 
Theoremlspss 13895 Span preserves subset ordering. (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
 
Theoremlspssid 13896 A set of vectors is a subset of its span. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
 
Theoremlspidm 13897 The span of a set of vectors is idempotent. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁‘(𝑁𝑈)) = (𝑁𝑈))
 
Theoremlspun 13898 The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
 
Theoremlspssp 13899 If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ 𝑈)
 
Theoremlspsnss 13900 The span of the singleton of a subspace member is included in the subspace. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 4-Sep-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >