| Intuitionistic Logic Explorer Theorem List (p. 139 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rhm1 13801 | Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) | ||
| Theorem | rhmf1o 13802 | A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | ||
| Theorem | isrim 13803 | An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
| Theorem | rimf1o 13804 | An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Theorem | rimrhm 13805 | A ring isomorphism is a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove hypotheses. (Revised by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | rhmfn 13806 | The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
| ⊢ RingHom Fn (Ring × Ring) | ||
| Theorem | rhmval 13807 | The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | ||
| Theorem | rhmco 13808 | The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) | ||
| Theorem | rhmdvdsr 13809 | A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ / = (∥r‘𝑆) ⇒ ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) | ||
| Theorem | rhmopp 13810 | A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom (oppr‘𝑆))) | ||
| Theorem | elrhmunit 13811 | Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) | ||
| Theorem | rhmunitinv 13812 | Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴))) | ||
| Syntax | cnzr 13813 | The class of nonzero rings. |
| class NzRing | ||
| Definition | df-nzr 13814 | A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | ||
| Theorem | isnzr 13815 | Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) | ||
| Theorem | nzrnz 13816 | One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) | ||
| Theorem | nzrring 13817 | A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | ||
| Theorem | isnzr2 13818 | Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) | ||
| Theorem | opprnzrbg 13819 | The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 13820. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing)) | ||
| Theorem | opprnzr 13820 | The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑂 ∈ NzRing) | ||
| Theorem | ringelnzr 13821 | A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) | ||
| Theorem | nzrunit 13822 | A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) | ||
| Theorem | 01eq0ring 13823 | If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) | ||
| Syntax | clring 13824 | Extend class notation with class of all local rings. |
| class LRing | ||
| Definition | df-lring 13825* | A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | ||
| Theorem | islring 13826* | The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
| Theorem | lringnzr 13827 | A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | ||
| Theorem | lringring 13828 | A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) | ||
| Theorem | lringnz 13829 | A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) | ||
| Theorem | lringuplu 13830 | If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ LRing) & ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
| Syntax | csubrng 13831 | Extend class notation with all subrings of a non-unital ring. |
| class SubRng | ||
| Definition | df-subrng 13832* | Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.) |
| ⊢ SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Rng}) | ||
| Theorem | issubrng 13833 | The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) | ||
| Theorem | subrngss 13834 | A subring is a subset. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrngid 13835 | Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngrng 13836 | A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) | ||
| Theorem | subrngrcl 13837 | Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | ||
| Theorem | subrngsubg 13838 | A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
| Theorem | subrngringnsg 13839 | A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) | ||
| Theorem | subrngbas 13840 | Base set of a subring structure. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | subrng0 13841 | A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 0 = (0g‘𝑆)) | ||
| Theorem | subrngacl 13842 | A subring is closed under addition. (Contributed by AV, 14-Feb-2025.) |
| ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
| Theorem | subrngmcl 13843 | A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 13867. (Revised by AV, 14-Feb-2025.) |
| ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | issubrng2 13844* | Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | opprsubrngg 13845 | Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) | ||
| Theorem | subrngintm 13846* | The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗 ∈ 𝑆) → ∩ 𝑆 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngin 13847 | The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRng‘𝑅)) | ||
| Theorem | subsubrng 13848 | A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrng2 13849 | The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | subrngpropd 13850* | If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿)) | ||
| Syntax | csubrg 13851 | Extend class notation with all subrings of a ring. |
| class SubRing | ||
| Syntax | crgspn 13852 | Extend class notation with span of a set of elements over a ring. |
| class RingSpan | ||
| Definition | df-subrg 13853* |
Define a subring of a ring as a set of elements that is a ring in its
own right and contains the multiplicative identity.
The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity 〈1, 0〉 which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧ (1r‘𝑤) ∈ 𝑠)}) | ||
| Definition | df-rgspn 13854* | The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | ||
| Theorem | issubrg 13855 | The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) | ||
| Theorem | subrgss 13856 | A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrgid 13857 | Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgring 13858 | A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) | ||
| Theorem | subrgcrng 13859 | A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) | ||
| Theorem | subrgrcl 13860 | Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | ||
| Theorem | subrgsubg 13861 | A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
| Theorem | subrg0 13862 | A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘𝑆)) | ||
| Theorem | subrg1cl 13863 | A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) | ||
| Theorem | subrgbas 13864 | Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | subrg1 13865 | A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) | ||
| Theorem | subrgacl 13866 | A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
| Theorem | subrgmcl 13867 | A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | subrgsubm 13868 | A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) | ||
| Theorem | subrgdvds 13869 | If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) | ||
| Theorem | subrguss 13870 | A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) | ||
| Theorem | subrginv 13871 | A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐽 = (invr‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
| Theorem | subrgdv 13872 | A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐸 = (/r‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) | ||
| Theorem | subrgunit 13873 | An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴))) | ||
| Theorem | subrgugrp 13874 | The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) | ||
| Theorem | issubrg2 13875* | Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | subrgnzr 13876 | A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ NzRing) | ||
| Theorem | subrgintm 13877* | The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤 ∈ 𝑆) → ∩ 𝑆 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgin 13878 | The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRing‘𝑅)) | ||
| Theorem | subsubrg 13879 | A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrg2 13880 | The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | issubrg3 13881 | A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) | ||
| Theorem | resrhm 13882 | Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) | ||
| Theorem | resrhm2b 13883 | Restriction of the codomain of a (ring) homomorphism. resghm2b 13470 analog. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) | ||
| Theorem | rhmeql 13884 | The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) | ||
| Theorem | rhmima 13885 | The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) | ||
| Theorem | rnrhmsubrg 13886 | The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.) |
| ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁)) | ||
| Theorem | subrgpropd 13887* | If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) | ||
| Theorem | rhmpropd 13888* | Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) | ||
| Syntax | crlreg 13889 | Set of left-regular elements in a ring. |
| class RLReg | ||
| Syntax | cdomn 13890 | Class of (ring theoretic) domains. |
| class Domn | ||
| Syntax | cidom 13891 | Class of integral domains. |
| class IDomn | ||
| Definition | df-rlreg 13892* | Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | ||
| Definition | df-domn 13893* | A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} | ||
| Definition | df-idom 13894 | An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ IDomn = (CRing ∩ Domn) | ||
| Theorem | rrgmex 13895 | A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) | ||
| Theorem | rrgval 13896* | Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} | ||
| Theorem | isrrg 13897* | Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) | ||
| Theorem | rrgeq0i 13898 | Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) | ||
| Theorem | rrgeq0 13899 | Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | rrgss 13900 | Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐸 ⊆ 𝐵 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |