HomeHome Intuitionistic Logic Explorer
Theorem List (p. 139 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13801-13900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2spim 13801* Double substitution, as in spim 1731. (Contributed by BJ, 17-Oct-2019.)
𝑥𝜒    &   𝑧𝜒    &   ((𝑥 = 𝑦𝑧 = 𝑡) → (𝜓𝜒))       (∀𝑧𝑥𝜓𝜒)
 
Theoremch2var 13802* Implicit substitution of 𝑦 for 𝑥 and 𝑡 for 𝑧 into a theorem. (Contributed by BJ, 17-Oct-2019.)
𝑥𝜓    &   𝑧𝜓    &   ((𝑥 = 𝑦𝑧 = 𝑡) → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremch2varv 13803* Version of ch2var 13802 with nonfreeness hypotheses replaced with disjoint variable conditions. (Contributed by BJ, 17-Oct-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-exlimmp 13804 Lemma for bj-vtoclgf 13811. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒𝜑)       (∀𝑥(𝜒 → (𝜑𝜓)) → (∃𝑥𝜒𝜓))
 
Theorembj-exlimmpi 13805 Lemma for bj-vtoclgf 13811. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒𝜑)    &   (𝜒 → (𝜑𝜓))       (∃𝑥𝜒𝜓)
 
Theorembj-sbimedh 13806 A strengthening of sbiedh 1780 (same proof). (Contributed by BJ, 16-Dec-2019.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theorembj-sbimeh 13807 A strengthening of sbieh 1783 (same proof). (Contributed by BJ, 16-Dec-2019.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theorembj-sbime 13808 A strengthening of sbie 1784 (same proof). (Contributed by BJ, 16-Dec-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
12.2.3  Set theorey miscellaneous
 
Theorembj-el2oss1o 13809 Shorter proof of el2oss1o 6422 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ 2o𝐴 ⊆ 1o)
 
12.2.4  Extensionality

Various utility theorems using FOL and extensionality.

 
Theorembj-vtoclgft 13810 Weakening two hypotheses of vtoclgf 2788. (Contributed by BJ, 21-Nov-2019.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴𝜑)       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))
 
Theorembj-vtoclgf 13811 Weakening two hypotheses of vtoclgf 2788. (Contributed by BJ, 21-Nov-2019.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴𝜑)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉𝜓)
 
Theoremelabgf0 13812 Lemma for elabgf 2872. (Contributed by BJ, 21-Nov-2019.)
(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))
 
Theoremelabgft1 13813 One implication of elabgf 2872, in closed form. (Contributed by BJ, 21-Nov-2019.)
𝑥𝐴    &   𝑥𝜓       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → 𝜓))
 
Theoremelabgf1 13814 One implication of elabgf 2872. (Contributed by BJ, 21-Nov-2019.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝜑} → 𝜓)
 
Theoremelabgf2 13815 One implication of elabgf 2872. (Contributed by BJ, 21-Nov-2019.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜓𝜑))       (𝐴𝐵 → (𝜓𝐴 ∈ {𝑥𝜑}))
 
Theoremelabf1 13816* One implication of elabf 2873. (Contributed by BJ, 21-Nov-2019.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝜑} → 𝜓)
 
Theoremelabf2 13817* One implication of elabf 2873. (Contributed by BJ, 21-Nov-2019.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜓𝜑))       (𝜓𝐴 ∈ {𝑥𝜑})
 
Theoremelab1 13818* One implication of elab 2874. (Contributed by BJ, 21-Nov-2019.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝜑} → 𝜓)
 
Theoremelab2a 13819* One implication of elab 2874. (Contributed by BJ, 21-Nov-2019.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜓𝜑))       (𝜓𝐴 ∈ {𝑥𝜑})
 
Theoremelabg2 13820* One implication of elabg 2876. (Contributed by BJ, 21-Nov-2019.)
(𝑥 = 𝐴 → (𝜓𝜑))       (𝐴𝑉 → (𝜓𝐴 ∈ {𝑥𝜑}))
 
Theorembj-rspgt 13821 Restricted specialization, generalized. Weakens a hypothesis of rspccv 2831 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝜓       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓)))
 
Theorembj-rspg 13822 Restricted specialization, generalized. Weakens a hypothesis of rspccv 2831 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
 
Theoremcbvrald 13823* Rule used to change bound variables, using implicit substitution. (Contributed by BJ, 22-Nov-2019.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
 
Theorembj-intabssel 13824 Version of intss1 3846 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
𝑥𝐴       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 {𝑥𝜑} ⊆ 𝐴))
 
Theorembj-intabssel1 13825 Version of intss1 3846 using a class abstraction and implicit substitution. Closed form of intmin3 3858. (Contributed by BJ, 29-Nov-2019.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜓𝜑))       (𝐴𝑉 → (𝜓 {𝑥𝜑} ⊆ 𝐴))
 
Theorembj-elssuniab 13826 Version of elssuni 3824 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
𝑥𝐴       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 {𝑥𝜑}))
 
Theorembj-sseq 13827 If two converse inclusions are characterized each by a formula, then equality is characterized by the conjunction of these formulas. (Contributed by BJ, 30-Nov-2019.)
(𝜑 → (𝜓𝐴𝐵))    &   (𝜑 → (𝜒𝐵𝐴))       (𝜑 → ((𝜓𝜒) ↔ 𝐴 = 𝐵))
 
12.2.5  Decidability of classes

The question of decidability is essential in intuitionistic logic. In intuitionistic set theories, it is natural to define decidability of a set (or class) as decidability of membership in it. One can parameterize this notion with another set (or class) since it is often important to assess decidability of membership in one class among elements of another class. Namely, one will say that "𝐴 is decidable in 𝐵 " if 𝑥𝐵DECID 𝑥𝐴 (see df-dcin 13829).

Note the similarity with the definition of a bounded class as a class for which membership in it is a bounded proposition (df-bdc 13876).

 
Syntaxwdcin 13828 Syntax for decidability of a class in another.
wff 𝐴 DECIDin 𝐵
 
Definitiondf-dcin 13829* Define decidability of a class in another. (Contributed by BJ, 19-Feb-2022.)
(𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
 
Theoremdecidi 13830 Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
(𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
 
Theoremdecidr 13831* Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
(𝜑 → (𝑥𝐵 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))       (𝜑𝐴 DECIDin 𝐵)
 
Theoremdecidin 13832 If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 DECIDin 𝐵)    &   (𝜑𝐵 DECIDin 𝐶)       (𝜑𝐴 DECIDin 𝐶)
 
Theoremuzdcinzz 13833 An upperset of integers is decidable in the integers. Reformulation of eluzdc 9569. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.)
(𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)
 
Theoremsumdc2 13834* Alternate proof of sumdc 11321, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11321). (Contributed by BJ, 19-Feb-2022.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)    &   (𝜑𝑁 ∈ ℤ)       (𝜑DECID 𝑁𝐴)
 
12.2.6  Disjoint union
 
Theoremdjucllem 13835* Lemma for djulcl 7028 and djurcl 7029. (Contributed by BJ, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)       (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
 
TheoremdjulclALT 13836 Shortening of djulcl 7028 using djucllem 13835. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
 
TheoremdjurclALT 13837 Shortening of djurcl 7029 using djucllem 13835. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
 
12.2.7  Miscellaneous
 
Theoremfunmptd 13838 The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5235, then prove funmptd 13838 from it, and then prove funmpt 5236 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

(𝜑𝐹 = (𝑥𝐴𝐵))       (𝜑 → Fun 𝐹)
 
Theoremfnmptd 13839* The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
(𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑𝐹 Fn 𝐴)
 
Theoremif0ab 13840* Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3574, (𝐴𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 13841 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
 
Theoremfmelpw1o 13841 With a formula 𝜑 one can associate an element of 𝒫 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than and , by nndc 846, which translate to 1o and respectively by iftrue 3531 and iffalse 3534, giving pwtrufal 14030).

As proved in if0ab 13840, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.)

if(𝜑, 1o, ∅) ∈ 𝒫 1o
 
Theorembj-charfun 13842* Properties of the characteristic function on the class 𝑋 of the class 𝐴. (Contributed by BJ, 15-Aug-2024.)
(𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))       (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
 
Theorembj-charfundc 13843* Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.)
(𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))    &   (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)       (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
 
Theorembj-charfundcALT 13844* Alternate proof of bj-charfundc 13843. It was expected to be much shorter since it uses bj-charfun 13842 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))    &   (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)       (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
 
Theorembj-charfunr 13845* If a class 𝐴 has a "weak" characteristic function on a class 𝑋, then negated membership in 𝐴 is decidable (in other words, membership in 𝐴 is testable) in 𝑋.

The hypothesis imposes that 𝑋 be a set. As usual, it could be formulated as (𝜑 → (𝐹:𝑋⟶ω ∧ ...)) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of 𝑓 were any class with testable equality to the point where (𝑋𝐴) is sent. (Contributed by BJ, 6-Aug-2024.)

(𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))       (𝜑 → ∀𝑥𝑋 DECID ¬ 𝑥𝐴)
 
Theorembj-charfunbi 13846* In an ambient set 𝑋, if membership in 𝐴 is stable, then it is decidable if and only if 𝐴 has a characteristic function.

This characterization can be applied to singletons when the set 𝑋 has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.)

(𝜑𝑋𝑉)    &   (𝜑 → ∀𝑥𝑋 STAB 𝑥𝐴)       (𝜑 → (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
 
12.2.8  Constructive Zermelo--Fraenkel set theory (CZF): Bounded formulas and classes

This section develops constructive Zermelo--Fraenkel set theory (CZF) on top of intuitionistic logic. It is a constructive theory in the sense that its logic is intuitionistic and it is predicative. "Predicative" means that new sets can be constructed only from already constructed sets. In particular, the axiom of separation ax-sep 4107 is not predicative (because we cannot allow all formulas to define a subset) and is replaced in CZF by bounded separation ax-bdsep 13919. Because this axiom is weaker than full separation, the axiom of replacement or collection ax-coll 4104 of ZF and IZF has to be strengthened in CZF to the axiom of strong collection ax-strcoll 14017 (which is a theorem of IZF), and the axiom of infinity needs a more precise version, the von Neumann axiom of infinity ax-infvn 13976. Similarly, the axiom of powerset ax-pow 4160 is not predicative (checking whether a set is included in another requires to universally quantifier over that "not yet constructed" set) and is replaced in CZF by the axiom of fullness or the axiom of subset collection ax-sscoll 14022.

In an intuitionistic context, the axiom of regularity is stated in IZF as well as in CZF as the axiom of set induction ax-setind 4521. It is sometimes interesting to study the weakening of CZF where that axiom is replaced by bounded set induction ax-bdsetind 14003.

For more details on CZF, a useful set of notes is

Peter Aczel and Michael Rathjen, CST Book draft. (available at http://www1.maths.leeds.ac.uk/~rathjen/book.pdf 14003)

and an interesting article is

Michael Shulman, Comparing material and structural set theories, Annals of Pure and Applied Logic, Volume 170, Issue 4 (Apr. 2019), 465--504. https://doi.org/10.48550/arXiv.1808.05204 14003

I also thank Michael Rathjen and Michael Shulman for useful hints in the formulation of some results.

 
12.2.8.1  Bounded formulas

The present definition of bounded formulas emerged from a discussion on GitHub between Jim Kingdon, Mario Carneiro and I, started 23-Sept-2019 (see https://github.com/metamath/set.mm/issues/1173 and links therein).

In order to state certain axiom schemes of Constructive Zermelo–Fraenkel (CZF) set theory, like the axiom scheme of bounded (or restricted, or Δ0) separation, it is necessary to distinguish certain formulas, called bounded (or restricted, or Δ0) formulas. The necessity of considering bounded formulas also arises in several theories of bounded arithmetic, both classical or intuitionistic, for instance to state the axiom scheme of Δ0-induction.

To formalize this in Metamath, there are several choices to make.

A first choice is to either create a new type for bounded formulas, or to create a predicate on formulas that indicates whether they are bounded. In the first case, one creates a new type "wff0" with a new set of metavariables (ph0 ...) and an axiom "$a wff ph0 " ensuring that bounded formulas are formulas, so that one can reuse existing theorems, and then axioms take the form "$a wff0 ( ph0 -> ps0 )", etc. In the second case, one introduces a predicate "BOUNDED " with the intended meaning that "BOUNDED 𝜑 " is a formula meaning that 𝜑 is a bounded formula. We choose the second option, since the first would complicate the grammar, risking to make it ambiguous. (TODO: elaborate.)

A second choice is to view "bounded" either as a syntactic or a semantic property. For instance, 𝑥 is not syntactically bounded since it has an unbounded universal quantifier, but it is semantically bounded since it is equivalent to which is bounded. We choose the second option, so that formulas using defined symbols can be proved bounded.

A third choice is in the form of the axioms, either in closed form or in inference form. One cannot state all the axioms in closed form, especially ax-bd0 13848. Indeed, if we posited it in closed form, then we could prove for instance (𝜑BOUNDED 𝜑) and 𝜑BOUNDED 𝜑) which is problematic (with the law of excluded middle, this would entail that all formulas are bounded, but even without it, too many formulas could be proved bounded...). (TODO: elaborate.)

Having ax-bd0 13848 in inference form ensures that a formula can be proved bounded only if it is equivalent *for all values of the free variables* to a syntactically bounded one. The other axioms (ax-bdim 13849 through ax-bdsb 13857) can be written either in closed or inference form. The fact that ax-bd0 13848 is an inference is enough to ensure that the closed forms cannot be "exploited" to prove that some unbounded formulas are bounded. (TODO: check.) However, we state all the axioms in inference form to make it clear that we do not exploit any over-permissiveness.

Finally, note that our logic has no terms, only variables. Therefore, we cannot prove for instance that 𝑥 ∈ ω is a bounded formula. However, since ω can be defined as "the 𝑦 such that PHI" a proof using the fact that 𝑥 ∈ ω is bounded can be converted to a proof in iset.mm by replacing ω with 𝑦 everywhere and prepending the antecedent PHI, since 𝑥𝑦 is bounded by ax-bdel 13856. For a similar method, see bj-omtrans 13991.

Note that one cannot add an axiom BOUNDED 𝑥𝐴 since by bdph 13885 it would imply that every formula is bounded.

 
Syntaxwbd 13847 Syntax for the predicate BOUNDED.
wff BOUNDED 𝜑
 
Axiomax-bd0 13848 If two formulas are equivalent, then boundedness of one implies boundedness of the other. (Contributed by BJ, 3-Oct-2019.)
(𝜑𝜓)       (BOUNDED 𝜑BOUNDED 𝜓)
 
Axiomax-bdim 13849 An implication between two bounded formulas is bounded. (Contributed by BJ, 25-Sep-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
 
Axiomax-bdan 13850 The conjunction of two bounded formulas is bounded. (Contributed by BJ, 25-Sep-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
 
Axiomax-bdor 13851 The disjunction of two bounded formulas is bounded. (Contributed by BJ, 25-Sep-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
 
Axiomax-bdn 13852 The negation of a bounded formula is bounded. (Contributed by BJ, 25-Sep-2019.)
BOUNDED 𝜑       BOUNDED ¬ 𝜑
 
Axiomax-bdal 13853* A bounded universal quantification of a bounded formula is bounded. Note the disjoint variable condition on 𝑥, 𝑦. (Contributed by BJ, 25-Sep-2019.)
BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
 
Axiomax-bdex 13854* A bounded existential quantification of a bounded formula is bounded. Note the disjoint variable condition on 𝑥, 𝑦. (Contributed by BJ, 25-Sep-2019.)
BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
 
Axiomax-bdeq 13855 An atomic formula is bounded (equality predicate). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥 = 𝑦
 
Axiomax-bdel 13856 An atomic formula is bounded (membership predicate). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥𝑦
 
Axiomax-bdsb 13857 A formula resulting from proper substitution in a bounded formula is bounded. This probably cannot be proved from the other axioms, since neither the definiens in df-sb 1756, nor probably any other equivalent formula, is syntactically bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
 
Theorembdeq 13858 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
(𝜑𝜓)       (BOUNDED 𝜑BOUNDED 𝜓)
 
Theorembd0 13859 A formula equivalent to a bounded one is bounded. See also bd0r 13860. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   (𝜑𝜓)       BOUNDED 𝜓
 
Theorembd0r 13860 A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 13859) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   (𝜓𝜑)       BOUNDED 𝜓
 
Theorembdbi 13861 A biconditional between two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
 
Theorembdstab 13862 Stability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED STAB 𝜑
 
Theorembddc 13863 Decidability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED DECID 𝜑
 
Theorembd3or 13864 A disjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓    &   BOUNDED 𝜒       BOUNDED (𝜑𝜓𝜒)
 
Theorembd3an 13865 A conjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓    &   BOUNDED 𝜒       BOUNDED (𝜑𝜓𝜒)
 
Theorembdth 13866 A truth (a (closed) theorem) is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
𝜑       BOUNDED 𝜑
 
Theorembdtru 13867 The truth value is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED
 
Theorembdfal 13868 The truth value is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED
 
Theorembdnth 13869 A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
¬ 𝜑       BOUNDED 𝜑
 
TheorembdnthALT 13870 Alternate proof of bdnth 13869 not using bdfal 13868. Then, bdfal 13868 can be proved from this theorem, using fal 1355. The total number of proof steps would be 17 (for bdnthALT 13870) + 3 = 20, which is more than 8 (for bdfal 13868) + 9 (for bdnth 13869) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ 𝜑       BOUNDED 𝜑
 
Theorembdxor 13871 The exclusive disjunction of two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
 
Theorembj-bdcel 13872* Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.)
BOUNDED 𝑦 = 𝐴       BOUNDED 𝐴𝑥
 
Theorembdab 13873 Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED 𝑥 ∈ {𝑦𝜑}
 
Theorembdcdeq 13874 Conditional equality of a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝜑       BOUNDED CondEq(𝑥 = 𝑦𝜑)
 
12.2.8.2  Bounded classes

In line with our definitions of classes as extensions of predicates, it is useful to define a predicate for bounded classes, which is done in df-bdc 13876. Note that this notion is only a technical device which can be used to shorten proofs of (semantic) boundedness of formulas.

As will be clear by the end of this subsection (see for instance bdop 13910), one can prove the boundedness of any concrete term using only setvars and bounded formulas, for instance, BOUNDED 𝜑 BOUNDED ⟨{𝑥𝜑}, ({𝑦, suc 𝑧} × ⟨𝑡, ∅⟩)⟩. The proofs are long since one has to prove boundedness at each step of the construction, without being able to prove general theorems like BOUNDED 𝐴BOUNDED {𝐴}.

 
Syntaxwbdc 13875 Syntax for the predicate BOUNDED.
wff BOUNDED 𝐴
 
Definitiondf-bdc 13876* Define a bounded class as one such that membership in this class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
(BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
 
Theorembdceq 13877 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
𝐴 = 𝐵       (BOUNDED 𝐴BOUNDED 𝐵)
 
Theorembdceqi 13878 A class equal to a bounded one is bounded. Note the use of ax-ext 2152. See also bdceqir 13879. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   𝐴 = 𝐵       BOUNDED 𝐵
 
Theorembdceqir 13879 A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 13878) equality in the hypothesis, to work better with definitions (𝐵 is the definiendum that one wants to prove bounded; see comment of bd0r 13860). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   𝐵 = 𝐴       BOUNDED 𝐵
 
Theorembdel 13880* The belonging of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
(BOUNDED 𝐴BOUNDED 𝑥𝐴)
 
Theorembdeli 13881* Inference associated with bdel 13880. Its converse is bdelir 13882. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝐴
 
Theorembdelir 13882* Inference associated with df-bdc 13876. Its converse is bdeli 13881. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥𝐴       BOUNDED 𝐴
 
Theorembdcv 13883 A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥
 
Theorembdcab 13884 A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
BOUNDED 𝜑       BOUNDED {𝑥𝜑}
 
Theorembdph 13885 A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
BOUNDED {𝑥𝜑}       BOUNDED 𝜑
 
Theorembds 13886* Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 13857; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 13857. (Contributed by BJ, 19-Nov-2019.)
BOUNDED 𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       BOUNDED 𝜓
 
Theorembdcrab 13887* A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝜑       BOUNDED {𝑥𝐴𝜑}
 
Theorembdne 13888 Inequality of two setvars is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥𝑦
 
Theorembdnel 13889* Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝐴
 
Theorembdreu 13890* Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula 𝑥𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 13892, and (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 13859, if 𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then 𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.)

BOUNDED 𝜑       BOUNDED ∃!𝑥𝑦 𝜑
 
Theorembdrmo 13891* Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝜑       BOUNDED ∃*𝑥𝑦 𝜑
 
Theorembdcvv 13892 The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
BOUNDED V
 
Theorembdsbc 13893 A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 13894. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
 
TheorembdsbcALT 13894 Alternate proof of bdsbc 13893. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
 
Theorembdccsb 13895 A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑦 / 𝑥𝐴
 
Theorembdcdif 13896 The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝐵       BOUNDED (𝐴𝐵)
 
Theorembdcun 13897 The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝐵       BOUNDED (𝐴𝐵)
 
Theorembdcin 13898 The intersection of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝐵       BOUNDED (𝐴𝐵)
 
Theorembdss 13899 The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝐴
 
Theorembdcnul 13900 The empty class is bounded. See also bdcnulALT 13901. (Contributed by BJ, 3-Oct-2019.)
BOUNDED
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >