Theorem List for Intuitionistic Logic Explorer - 13801-13900 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | lmodvscl 13801 |
Closure of scalar product for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
|
Theorem | scaffvalg 13802* |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
|
⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
|
Theorem | scafvalg 13803 |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
|
Theorem | scafeqg 13804 |
If the scalar multiplication operation is already a function, the
functionalization of it is equal to the original operation.
(Contributed by Mario Carneiro, 5-Oct-2015.)
|
⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = ·
) |
|
Theorem | scaffng 13805 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
|
Theorem | lmodscaf 13806 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
|
Theorem | lmodvsdi 13807 |
Distributive law for scalar product (left-distributivity). (Contributed
by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
|
Theorem | lmodvsdir 13808 |
Distributive law for scalar product (right-distributivity).
(Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro,
22-Sep-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
|
Theorem | lmodvsass 13809 |
Associative law for scalar product. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 22-Sep-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ × =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
|
Theorem | lmod0cl 13810 |
The ring zero in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
|
Theorem | lmod1cl 13811 |
The ring unity in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
|
Theorem | lmodvs1 13812 |
Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
|
Theorem | lmod0vcl 13813 |
The zero vector is a vector. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
|
Theorem | lmod0vlid 13814 |
Left identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
|
Theorem | lmod0vrid 13815 |
Right identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
|
Theorem | lmod0vid 13816 |
Identity equivalent to the value of the zero vector. Provides a
convenient way to compute the value. (Contributed by NM, 9-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
|
Theorem | lmod0vs 13817 |
Zero times a vector is the zero vector. Equation 1a of [Kreyszig]
p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑂 = (0g‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
|
Theorem | lmodvs0 13818 |
Anything times the zero vector is the zero vector. Equation 1b of
[Kreyszig] p. 51. (Contributed by NM,
12-Jan-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
|
Theorem | lmodvsmmulgdi 13819 |
Distributive law for a group multiple of a scalar multiplication.
(Contributed by AV, 2-Sep-2019.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ↑ =
(.g‘𝑊)
& ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)) |
|
Theorem | lmodfopnelem1 13820 |
Lemma 1 for lmodfopne 13822. (Contributed by AV, 2-Oct-2021.)
|
⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
|
Theorem | lmodfopnelem2 13821 |
Lemma 2 for lmodfopne 13822. (Contributed by AV, 2-Oct-2021.)
|
⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
|
Theorem | lmodfopne 13822 |
The (functionalized) operations of a left module (over a nonzero ring)
cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV,
2-Oct-2021.)
|
⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ ·
) |
|
Theorem | lcomf 13823 |
A linear-combination sum is a function. (Contributed by Stefan O'Rear,
28-Feb-2015.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐵 = (Base‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐾)
& ⊢ (𝜑 → 𝐻:𝐼⟶𝐵)
& ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
|
Theorem | lmodvnegcl 13824 |
Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised
by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) |
|
Theorem | lmodvnegid 13825 |
Addition of a vector with its negative. (Contributed by NM,
18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
|
Theorem | lmodvneg1 13826 |
Minus 1 times a vector is the negative of the vector. Equation 2 of
[Kreyszig] p. 51. (Contributed by NM,
18-Apr-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
|
Theorem | lmodvsneg 13827 |
Multiplication of a vector by a negated scalar. (Contributed by Stefan
O'Rear, 28-Feb-2015.)
|
⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
|
Theorem | lmodvsubcl 13828 |
Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
|
Theorem | lmodcom 13829 |
Left module vector sum is commutative. (Contributed by Gérard
Lang, 25-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
|
Theorem | lmodabl 13830 |
A left module is an abelian group (of vectors, under addition).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
25-Jun-2014.)
|
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
|
Theorem | lmodcmn 13831 |
A left module is a commutative monoid under addition. (Contributed by
NM, 7-Jan-2015.)
|
⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) |
|
Theorem | lmodnegadd 13832 |
Distribute negation through addition of scalar products. (Contributed
by NM, 9-Apr-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝑅 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑅)
& ⊢ 𝐼 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
|
Theorem | lmod4 13833 |
Commutative/associative law for left module vector sum. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈))) |
|
Theorem | lmodvsubadd 13834 |
Relationship between vector subtraction and addition. (Contributed by
NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
|
Theorem | lmodvaddsub4 13835 |
Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 − 𝐶) = (𝐷 − 𝐵))) |
|
Theorem | lmodvpncan 13836 |
Addition/subtraction cancellation law for vectors. (Contributed by NM,
16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
|
Theorem | lmodvnpcan 13837 |
Cancellation law for vector subtraction (Contributed by NM,
19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
|
Theorem | lmodvsubval2 13838 |
Value of vector subtraction in terms of addition. (Contributed by NM,
31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
|
Theorem | lmodsubvs 13839 |
Subtraction of a scalar product in terms of addition. (Contributed by
NM, 9-Apr-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
|
Theorem | lmodsubdi 13840 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) |
|
Theorem | lmodsubdir 13841 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (-g‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
|
Theorem | lmodsubeq0 13842 |
If the difference between two vectors is zero, they are equal.
(Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
|
Theorem | lmodsubid 13843 |
Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉) → (𝐴 − 𝐴) = 0 ) |
|
Theorem | lmodprop2d 13844* |
If two structures have the same components (properties), one is a left
module iff the other one is. This version of lmodpropd 13845 also breaks up
the components of the scalar ring. (Contributed by Mario Carneiro,
27-Jun-2015.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
|
Theorem | lmodpropd 13845* |
If two structures have the same components (properties), one is a left
module iff the other one is. (Contributed by Mario Carneiro,
8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
|
Theorem | rmodislmodlem 13846* |
Lemma for rmodislmod 13847. This is the part of the proof of rmodislmod 13847
which requires the scalar ring to be commutative. (Contributed by AV,
3-Dec-2021.)
|
⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ ((𝐹 ∈ CRing ∧ (𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 × 𝑏) ∗ 𝑐) = (𝑎 ∗ (𝑏 ∗ 𝑐))) |
|
Theorem | rmodislmod 13847* |
The right module 𝑅 induces a left module 𝐿 by
replacing the
scalar multiplication with a reversed multiplication if the scalar ring
is commutative. The hypothesis "rmodislmod.r" is a definition
of a
right module analogous to Definition df-lmod 13785 of a left module, see
also islmod 13787. (Contributed by AV, 3-Dec-2021.) (Proof
shortened by
AV, 18-Oct-2024.)
|
⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) |
|
7.5.2 Subspaces and spans in a left
module
|
|
Syntax | clss 13848 |
Extend class notation with linear subspaces of a left module or left
vector space.
|
class LSubSp |
|
Definition | df-lssm 13849* |
A linear subspace of a left module or left vector space is an inhabited
(in contrast to non-empty for non-intuitionistic logic) subset of the
base set of the left-module/vector space with a closure condition on
vector addition and scalar multiplication. (Contributed by NM,
8-Dec-2013.)
|
⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
|
Theorem | lssex 13850 |
Existence of a linear subspace. (Contributed by Jim Kingdon,
27-Apr-2025.)
|
⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
|
Theorem | lssmex 13851 |
If a linear subspace is inhabited, the class it is built from is a set.
(Contributed by Jim Kingdon, 28-Apr-2025.)
|
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
|
Theorem | lsssetm 13852* |
The set of all (not necessarily closed) linear subspaces of a left
module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario Carneiro, 15-Jul-2014.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
|
Theorem | islssm 13853* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
|
Theorem | islssmg 13854* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.) Use islssm 13853 instead. (New usage is discouraged.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
|
Theorem | islssmd 13855* |
Properties that determine a subspace of a left module or left vector
space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉)
& ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
& ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
|
Theorem | lssssg 13856 |
A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
|
Theorem | lsselg 13857 |
A subspace member is a vector. (Contributed by NM, 11-Jan-2014.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
|
Theorem | lss1 13858 |
The set of vectors in a left module is a subspace. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
|
Theorem | lssuni 13859 |
The union of all subspaces is the vector space. (Contributed by NM,
13-Mar-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
|
Theorem | lssclg 13860 |
Closure property of a subspace. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
|
Theorem | lssvacl 13861 |
Closure of vector addition in a subspace. (Contributed by NM,
11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
|
Theorem | lssvsubcl 13862 |
Closure of vector subtraction in a subspace. (Contributed by NM,
31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) |
|
Theorem | lssvancl1 13863 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 14-May-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
|
Theorem | lssvancl2 13864 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 20-May-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈) |
|
Theorem | lss0cl 13865 |
The zero vector belongs to every subspace. (Contributed by NM,
12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
|
Theorem | lsssn0 13866 |
The singleton of the zero vector is a subspace. (Contributed by NM,
13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
|
Theorem | lss0ss 13867 |
The zero subspace is included in every subspace. (Contributed by NM,
27-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆) → { 0 } ⊆ 𝑋) |
|
Theorem | lssle0 13868 |
No subspace is smaller than the zero subspace. (Contributed by NM,
20-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑋 ⊆ { 0 } ↔ 𝑋 = { 0 })) |
|
Theorem | lssvneln0 13869 |
A vector 𝑋 which doesn't belong to a subspace
𝑈
is nonzero.
(Contributed by NM, 14-May-2015.) (Revised by AV, 19-Jul-2022.)
|
⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ≠ 0 ) |
|
Theorem | lssneln0 13870 |
A vector 𝑋 which doesn't belong to a subspace
𝑈
is nonzero.
(Contributed by NM, 14-May-2015.) (Revised by AV, 17-Jul-2022.) (Proof
shortened by AV, 19-Jul-2022.)
|
⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
|
Theorem | lssvscl 13871 |
Closure of scalar product in a subspace. (Contributed by NM,
11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
|
Theorem | lssvnegcl 13872 |
Closure of negative vectors in a subspace. (Contributed by Stefan
O'Rear, 11-Dec-2014.)
|
⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
|
Theorem | lsssubg 13873 |
All subspaces are subgroups. (Contributed by Stefan O'Rear,
11-Dec-2014.)
|
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
|
Theorem | lsssssubg 13874 |
All subspaces are subgroups. (Contributed by Mario Carneiro,
19-Apr-2016.)
|
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
|
Theorem | islss3 13875 |
A linear subspace of a module is a subset which is a module in its own
right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario
Carneiro, 30-Apr-2015.)
|
⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod))) |
|
Theorem | lsslmod 13876 |
A submodule is a module. (Contributed by Stefan O'Rear,
12-Dec-2014.)
|
⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
|
Theorem | lsslss 13877 |
The subspaces of a subspace are the smaller subspaces. (Contributed by
Stefan O'Rear, 12-Dec-2014.)
|
⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑇 = (LSubSp‘𝑋) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
|
Theorem | islss4 13878* |
A linear subspace is a subgroup which respects scalar multiplication.
(Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario
Carneiro, 19-Apr-2016.)
|
⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
|
Theorem | lss1d 13879* |
One-dimensional subspace (or zero-dimensional if 𝑋 is the zero
vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario
Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆) |
|
Theorem | lssintclm 13880* |
The intersection of an inhabited set of subspaces is a subspace.
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∩ 𝐴 ∈ 𝑆) |
|
Theorem | lssincl 13881 |
The intersection of two subspaces is a subspace. (Contributed by NM,
7-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∩ 𝑈) ∈ 𝑆) |
|
Syntax | clspn 13882 |
Extend class notation with span of a set of vectors.
|
class LSpan |
|
Definition | df-lsp 13883* |
Define span of a set of vectors of a left module or left vector space.
(Contributed by NM, 8-Dec-2013.)
|
⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (LSubSp‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
|
Theorem | lspfval 13884* |
The span function for a left vector space (or a left module).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩
{𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
|
Theorem | lspf 13885 |
The span function on a left module maps subsets to subspaces.
(Contributed by Stefan O'Rear, 12-Dec-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 𝑉⟶𝑆) |
|
Theorem | lspval 13886* |
The span of a set of vectors (in a left module). (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
|
Theorem | lspcl 13887 |
The span of a set of vectors is a subspace. (Contributed by NM,
9-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ 𝑆) |
|
Theorem | lspsncl 13888 |
The span of a singleton is a subspace (frequently used special case of
lspcl 13887). (Contributed by NM, 17-Jul-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
|
Theorem | lspprcl 13889 |
The span of a pair is a subspace (frequently used special case of
lspcl 13887). (Contributed by NM, 11-Apr-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆) |
|
Theorem | lsptpcl 13890 |
The span of an unordered triple is a subspace (frequently used special
case of lspcl 13887). (Contributed by NM, 22-May-2015.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌, 𝑍}) ∈ 𝑆) |
|
Theorem | lspex 13891 |
Existence of the span of a set of vectors. (Contributed by Jim Kingdon,
25-Apr-2025.)
|
⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) ∈ V) |
|
Theorem | lspsnsubg 13892 |
The span of a singleton is an additive subgroup (frequently used special
case of lspcl 13887). (Contributed by Mario Carneiro,
21-Apr-2016.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
|
Theorem | lspid 13893 |
The span of a subspace is itself. (Contributed by NM, 15-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
|
Theorem | lspssv 13894 |
A span is a set of vectors. (Contributed by NM, 22-Feb-2014.) (Revised
by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ 𝑉) |
|
Theorem | lspss 13895 |
Span preserves subset ordering. (Contributed by NM, 11-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
|
Theorem | lspssid 13896 |
A set of vectors is a subset of its span. (Contributed by NM,
6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
|
Theorem | lspidm 13897 |
The span of a set of vectors is idempotent. (Contributed by NM,
22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) |
|
Theorem | lspun 13898 |
The span of union is the span of the union of spans. (Contributed by
NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
|
Theorem | lspssp 13899 |
If a set of vectors is a subset of a subspace, then the span of those
vectors is also contained in the subspace. (Contributed by Mario
Carneiro, 4-Sep-2014.)
|
⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
|
Theorem | lspsnss 13900 |
The span of the singleton of a subspace member is included in the
subspace. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro,
4-Sep-2014.)
|
⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |