Theorem List for Intuitionistic Logic Explorer - 13801-13900 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | neifval 13801* |
Value of the neighborhood function on the subsets of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) |
|
Theorem | neif 13802 |
The neighborhood function is a function from the set of the subsets of
the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised
by Mario Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) |
|
Theorem | neiss2 13803 |
A set with a neighborhood is a subset of the base set of a topology.
(This theorem depends on a function's value being empty outside of its
domain, but it will make later theorems simpler to state.) (Contributed
by NM, 12-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
|
Theorem | neival 13804* |
Value of the set of neighborhoods of a subset of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) |
|
Theorem | isnei 13805* |
The predicate "the class 𝑁 is a neighborhood of 𝑆".
(Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
|
Theorem | neiint 13806 |
An intuitive definition of a neighborhood in terms of interior.
(Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
|
Theorem | isneip 13807* |
The predicate "the class 𝑁 is a neighborhood of point 𝑃".
(Contributed by NM, 26-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
|
Theorem | neii1 13808 |
A neighborhood is included in the topology's base set. (Contributed by
NM, 12-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ 𝑋) |
|
Theorem | neisspw 13809 |
The neighborhoods of any set are subsets of the base set. (Contributed
by Stefan O'Rear, 6-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
|
Theorem | neii2 13810* |
Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
|
Theorem | neiss 13811 |
Any neighborhood of a set 𝑆 is also a neighborhood of any subset
𝑅
⊆ 𝑆. Similar
to Proposition 1 of [BourbakiTop1] p.
I.2.
(Contributed by FL, 25-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
|
Theorem | ssnei 13812 |
A set is included in any of its neighborhoods. Generalization to
subsets of elnei 13813. (Contributed by FL, 16-Nov-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) |
|
Theorem | elnei 13813 |
A point belongs to any of its neighborhoods. Property Viii of
[BourbakiTop1] p. I.3. (Contributed
by FL, 28-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) |
|
Theorem | 0nnei 13814 |
The empty set is not a neighborhood of a nonempty set. (Contributed by
FL, 18-Sep-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈
((nei‘𝐽)‘𝑆)) |
|
Theorem | neipsm 13815* |
A neighborhood of a set is a neighborhood of every point in the set.
Proposition 1 of [BourbakiTop1] p.
I.2. (Contributed by FL,
16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) |
|
Theorem | opnneissb 13816 |
An open set is a neighborhood of any of its subsets. (Contributed by
FL, 2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | opnssneib 13817 |
Any superset of an open set is a neighborhood of it. (Contributed by
NM, 14-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | ssnei2 13818 |
Any subset 𝑀 of 𝑋 containing a
neighborhood 𝑁 of a set 𝑆
is a neighborhood of this set. Generalization to subsets of Property
Vi of [BourbakiTop1] p. I.3. (Contributed by FL,
2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneiss 13819 |
An open set is a neighborhood of any of its subsets. (Contributed by NM,
13-Feb-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneip 13820 |
An open set is a neighborhood of any of its members. (Contributed by NM,
8-Mar-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
|
Theorem | tpnei 13821 |
The underlying set of a topology is a neighborhood of any of its
subsets. Special case of opnneiss 13819. (Contributed by FL,
2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | neiuni 13822 |
The union of the neighborhoods of a set equals the topology's underlying
set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro,
9-Apr-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪
((nei‘𝐽)‘𝑆)) |
|
Theorem | topssnei 13823 |
A finer topology has more neighborhoods. (Contributed by Mario
Carneiro, 9-Apr-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) |
|
Theorem | innei 13824 |
The intersection of two neighborhoods of a set is also a neighborhood of
the set. Generalization to subsets of Property Vii of [BourbakiTop1]
p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneiid 13825 |
Only an open set is a neighborhood of itself. (Contributed by FL,
2-Oct-2006.)
|
⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
|
Theorem | neissex 13826* |
For any neighborhood 𝑁 of 𝑆, there is a neighborhood
𝑥
of
𝑆 such that 𝑁 is a neighborhood of all
subsets of 𝑥.
Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3.
(Contributed by FL, 2-Oct-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
|
Theorem | 0nei 13827 |
The empty set is a neighborhood of itself. (Contributed by FL,
10-Dec-2006.)
|
⊢ (𝐽 ∈ Top → ∅ ∈
((nei‘𝐽)‘∅)) |
|
8.1.6 Subspace topologies
|
|
Theorem | restrcl 13828 |
Reverse closure for the subspace topology. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon,
23-Mar-2023.)
|
⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
|
Theorem | restbasg 13829 |
A subspace topology basis is a basis. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝐵 ↾t 𝐴) ∈ TopBases) |
|
Theorem | tgrest 13830 |
A subspace can be generated by restricted sets from a basis for the
original topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
(Proof shortened by Mario Carneiro, 30-Aug-2015.)
|
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) |
|
Theorem | resttop 13831 |
A subspace topology is a topology. Definition of subspace topology in
[Munkres] p. 89. 𝐴 is normally a subset of
the base set of 𝐽.
(Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro,
1-May-2015.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
|
Theorem | resttopon 13832 |
A subspace topology is a topology on the base set. (Contributed by
Mario Carneiro, 13-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
|
Theorem | restuni 13833 |
The underlying set of a subspace topology. (Contributed by FL,
5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
|
Theorem | stoig 13834 |
The topological space built with a subspace topology. (Contributed by
FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉,
〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
|
Theorem | restco 13835 |
Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.)
(Revised by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) |
|
Theorem | restabs 13836 |
Equivalence of being a subspace of a subspace and being a subspace of the
original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened
by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
|
Theorem | restin 13837 |
When the subspace region is not a subset of the base of the topology,
the resulting set is the same as the subspace restricted to the base.
(Contributed by Mario Carneiro, 15-Dec-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
|
Theorem | restuni2 13838 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 21-Mar-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
|
Theorem | resttopon2 13839 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 13-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) |
|
Theorem | rest0 13840 |
The subspace topology induced by the topology 𝐽 on the empty set.
(Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro,
1-May-2015.)
|
⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) =
{∅}) |
|
Theorem | restsn 13841 |
The only subspace topology induced by the topology {∅}.
(Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro,
15-Dec-2013.)
|
⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t
𝐴) =
{∅}) |
|
Theorem | restopnb 13842 |
If 𝐵 is an open subset of the subspace
base set 𝐴, then any
subset of 𝐵 is open iff it is open in 𝐴.
(Contributed by Mario
Carneiro, 2-Mar-2015.)
|
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) |
|
Theorem | ssrest 13843 |
If 𝐾 is a finer topology than 𝐽, then
the subspace topologies
induced by 𝐴 maintain this relationship.
(Contributed by Mario
Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
|
Theorem | restopn2 13844 |
If 𝐴 is open, then 𝐵 is open in 𝐴 iff it
is an open subset of
𝐴. (Contributed by Mario Carneiro,
2-Mar-2015.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
|
Theorem | restdis 13845 |
A subspace of a discrete topology is discrete. (Contributed by Mario
Carneiro, 19-Mar-2015.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
|
8.1.7 Limits and continuity in topological
spaces
|
|
Syntax | ccn 13846 |
Extend class notation with the class of continuous functions between
topologies.
|
class Cn |
|
Syntax | ccnp 13847 |
Extend class notation with the class of functions between topologies
continuous at a given point.
|
class CnP |
|
Syntax | clm 13848 |
Extend class notation with a function on topological spaces whose value is
the convergence relation for limit sequences in the space.
|
class ⇝𝑡 |
|
Definition | df-cn 13849* |
Define a function on two topologies whose value is the set of continuous
mappings from the first topology to the second. Based on definition of
continuous function in [Munkres] p. 102.
See iscn 13858 for the predicate
form. (Contributed by NM, 17-Oct-2006.)
|
⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
|
Definition | df-cnp 13850* |
Define a function on two topologies whose value is the set of continuous
mappings at a specified point in the first topology. Based on Theorem
7.2(g) of [Munkres] p. 107.
(Contributed by NM, 17-Oct-2006.)
|
⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
|
Definition | df-lm 13851* |
Define a function on topologies whose value is the convergence relation
for sequences into the given topological space. Although 𝑓 is
typically a sequence (a function from an upperset of integers) with
values in the topological space, it need not be. Note, however, that
the limit property concerns only values at integers, so that the
real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π
· 𝑥)))
converges to zero (in the standard topology on the reals) with this
definition. (Contributed by NM, 7-Sep-2006.)
|
⊢ ⇝𝑡 = (𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
|
Theorem | lmrcl 13852 |
Reverse closure for the convergence relation. (Contributed by Mario
Carneiro, 7-Sep-2015.)
|
⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
|
Theorem | lmfval 13853* |
The relation "sequence 𝑓 converges to point 𝑦 "
in a metric
space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
|
Theorem | lmreltop 13854 |
The topological space convergence relation is a relation. (Contributed
by Jim Kingdon, 25-Mar-2023.)
|
⊢ (𝐽 ∈ Top → Rel
(⇝𝑡‘𝐽)) |
|
Theorem | cnfval 13855* |
The set of all continuous functions from topology 𝐽 to topology
𝐾. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
|
Theorem | cnpfval 13856* |
The function mapping the points in a topology 𝐽 to the set of all
functions from 𝐽 to topology 𝐾 continuous at that
point.
(Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
|
Theorem | cnovex 13857 |
The class of all continuous functions from a topology to another is a
set. (Contributed by Jim Kingdon, 14-Dec-2023.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
|
Theorem | iscn 13858* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | cnpval 13859* |
The set of all functions from topology 𝐽 to topology 𝐾 that are
continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
|
Theorem | iscnp 13860* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
Based on Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
|
Theorem | iscn2 13861* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | cntop1 13862 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
|
Theorem | cntop2 13863 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
|
Theorem | iscnp3 13864* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
(Contributed by NM,
15-May-2007.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |
|
Theorem | cnf 13865 |
A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
|
Theorem | cnf2 13866 |
A continuous function is a mapping. (Contributed by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
|
Theorem | cnprcl2k 13867 |
Reverse closure for a function continuous at a point. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
|
Theorem | cnpf2 13868 |
A continuous function at point 𝑃 is a mapping. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
|
Theorem | tgcn 13869* |
The continuity predicate when the range is given by a basis for a
topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by
Mario Carneiro, 22-Aug-2015.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | tgcnp 13870* |
The "continuous at a point" predicate when the range is given by a
basis
for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised
by Mario Carneiro, 22-Aug-2015.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
|
Theorem | ssidcn 13871 |
The identity function is a continuous function from one topology to
another topology on the same set iff the domain is finer than the
codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by
Mario Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
|
Theorem | icnpimaex 13872* |
Property of a function continuous at a point. (Contributed by FL,
31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
|
Theorem | idcn 13873 |
A restricted identity function is a continuous function. (Contributed
by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro,
21-Mar-2015.)
|
⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
|
Theorem | lmbr 13874* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a topological space.
Definition 1.4-1 of [Kreyszig] p. 25.
The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more
general
than sequences when convenient; see the comment in df-lm 13851.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
|
Theorem | lmbr2 13875* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
|
Theorem | lmbrf 13876* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
This version of lmbr2 13875 presupposes that 𝐹 is a function.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐴 ∈ 𝑢)))) |
|
Theorem | lmconst 13877 |
A constant sequence converges to its value. (Contributed by NM,
8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
|
Theorem | lmcvg 13878* |
Convergence property of a converging sequence. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑃 ∈ 𝑈)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝑈 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
|
Theorem | iscnp4 13879* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃 "
in terms of neighborhoods.
(Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
|
Theorem | cnpnei 13880* |
A condition for continuity at a point in terms of neighborhoods.
(Contributed by Jeff Hankins, 7-Sep-2009.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |
|
Theorem | cnima 13881 |
An open subset of the codomain of a continuous function has an open
preimage. (Contributed by FL, 15-Dec-2006.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
|
Theorem | cnco 13882 |
The composition of two continuous functions is a continuous function.
(Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
|
Theorem | cnptopco 13883 |
The composition of a function 𝐹 continuous at 𝑃 with a function
continuous at (𝐹‘𝑃) is continuous at 𝑃.
Proposition 2 of
[BourbakiTop1] p. I.9.
(Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 27-Dec-2014.)
|
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → (𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃)) |
|
Theorem | cnclima 13884 |
A closed subset of the codomain of a continuous function has a closed
preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
|
Theorem | cnntri 13885 |
Property of the preimage of an interior. (Contributed by Mario
Carneiro, 25-Aug-2015.)
|
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
|
Theorem | cnntr 13886* |
Continuity in terms of interior. (Contributed by Jeff Hankins,
2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
|
Theorem | cnss1 13887 |
If the topology 𝐾 is finer than 𝐽, then there are more
continuous functions from 𝐾 than from 𝐽. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
|
Theorem | cnss2 13888 |
If the topology 𝐾 is finer than 𝐽, then there are fewer
continuous functions into 𝐾 than into 𝐽 from some other space.
(Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
|
Theorem | cncnpi 13889 |
A continuous function is continuous at all points. One direction of
Theorem 7.2(g) of [Munkres] p. 107.
(Contributed by Raph Levien,
20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
|
Theorem | cnsscnp 13890 |
The set of continuous functions is a subset of the set of continuous
functions at a point. (Contributed by Raph Levien, 21-Oct-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑃 ∈ 𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃)) |
|
Theorem | cncnp 13891* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
15-May-2007.) (Proof shortened
by Mario Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
|
Theorem | cncnp2m 13892* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by Raph
Levien, 20-Nov-2006.) (Revised
by Jim Kingdon, 30-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
|
Theorem | cnnei 13893* |
Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux,
3-Jan-2018.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
|
Theorem | cnconst2 13894 |
A constant function is continuous. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) |
|
Theorem | cnconst 13895 |
A constant function is continuous. (Contributed by FL, 15-Jan-2007.)
(Proof shortened by Mario Carneiro, 19-Mar-2015.)
|
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵 ∈ 𝑌 ∧ 𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
|
Theorem | cnrest 13896 |
Continuity of a restriction from a subspace. (Contributed by Jeff
Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
|
Theorem | cnrest2 13897 |
Equivalence of continuity in the parent topology and continuity in a
subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened
by Mario Carneiro, 21-Aug-2015.)
|
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)))) |
|
Theorem | cnrest2r 13898 |
Equivalence of continuity in the parent topology and continuity in a
subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 7-Jun-2014.)
|
⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
|
Theorem | cnptopresti 13899 |
One direction of cnptoprest 13900 under the weaker condition that the point
is in the subset rather than the interior of the subset. (Contributed
by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon,
31-Mar-2023.)
|
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)) |
|
Theorem | cnptoprest 13900 |
Equivalence of continuity at a point and continuity of the restricted
function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.)
(Revised by Jim Kingdon, 5-Apr-2023.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) |