Theorem List for Intuitionistic Logic Explorer - 13801-13900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ghmmulg 13801 |
A group homomorphism preserves group multiples. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ × =
(.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) |
| |
| Theorem | ghmrn 13802 |
The range of a homomorphism is a subgroup. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇)) |
| |
| Theorem | 0ghm 13803 |
The constant zero linear function between two groups. (Contributed by
Stefan O'Rear, 5-Sep-2015.)
|
| ⊢ 0 =
(0g‘𝑁)
& ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
| |
| Theorem | idghm 13804 |
The identity homomorphism on a group. (Contributed by Stefan O'Rear,
31-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
| |
| Theorem | resghm 13805 |
Restriction of a homomorphism to a subgroup. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
| |
| Theorem | resghm2 13806 |
One direction of resghm2b 13807. (Contributed by Mario Carneiro,
13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
|
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| |
| Theorem | resghm2b 13807 |
Restriction of the codomain of a homomorphism. (Contributed by Mario
Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
|
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| |
| Theorem | ghmghmrn 13808 |
A group homomorphism from 𝐺 to 𝐻 is also a group
homomorphism
from 𝐺 to its image in 𝐻.
(Contributed by Paul Chapman,
3-Mar-2008.) (Revised by AV, 26-Aug-2021.)
|
| ⊢ 𝑈 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
| |
| Theorem | ghmco 13809 |
The composition of group homomorphisms is a homomorphism. (Contributed by
Mario Carneiro, 12-Jun-2015.)
|
| ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
| |
| Theorem | ghmima 13810 |
The image of a subgroup under a homomorphism. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) |
| |
| Theorem | ghmpreima 13811 |
The inverse image of a subgroup under a homomorphism. (Contributed by
Stefan O'Rear, 31-Dec-2014.)
|
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
| |
| Theorem | ghmeql 13812 |
The equalizer of two group homomorphisms is a subgroup. (Contributed by
Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
|
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) |
| |
| Theorem | ghmnsgima 13813 |
The image of a normal subgroup under a surjective homomorphism is
normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
|
| ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹 “ 𝑈) ∈ (NrmSGrp‘𝑇)) |
| |
| Theorem | ghmnsgpreima 13814 |
The inverse image of a normal subgroup under a homomorphism is normal.
(Contributed by Mario Carneiro, 4-Feb-2015.)
|
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) |
| |
| Theorem | ghmker 13815 |
The kernel of a homomorphism is a normal subgroup. (Contributed by
Mario Carneiro, 4-Feb-2015.)
|
| ⊢ 0 =
(0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝑆)) |
| |
| Theorem | ghmeqker 13816 |
Two source points map to the same destination point under a group
homomorphism iff their difference belongs to the kernel. (Contributed
by Stefan O'Rear, 31-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑇)
& ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ − =
(-g‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ (𝑈 − 𝑉) ∈ 𝐾)) |
| |
| Theorem | f1ghm0to0 13817 |
If a group homomorphism 𝐹 is injective, it maps the zero of
one
group (and only the zero) to the zero of the other group. (Contributed
by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
|
| ⊢ 𝐴 = (Base‘𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝑁 = (0g‘𝑅)
& ⊢ 0 =
(0g‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
| |
| Theorem | ghmf1 13818* |
Two ways of saying a group homomorphism is 1-1 into its codomain.
(Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro,
13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
|
| ⊢ 𝐴 = (Base‘𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝑁 = (0g‘𝑅)
& ⊢ 0 =
(0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁))) |
| |
| Theorem | kerf1ghm 13819 |
A group homomorphism 𝐹 is injective if and only if its
kernel is the
singleton {𝑁}. (Contributed by Thierry Arnoux,
27-Oct-2017.)
(Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux,
13-May-2023.)
|
| ⊢ 𝐴 = (Base‘𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝑁 = (0g‘𝑅)
& ⊢ 0 =
(0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) |
| |
| Theorem | ghmf1o 13820 |
A bijective group homomorphism is an isomorphism. (Contributed by Mario
Carneiro, 13-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝑆)
& ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) |
| |
| Theorem | conjghm 13821* |
Conjugation is an automorphism of the group. (Contributed by Mario
Carneiro, 13-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) |
| |
| Theorem | conjsubg 13822* |
A conjugated subgroup is also a subgroup. (Contributed by Mario
Carneiro, 13-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) |
| |
| Theorem | conjsubgen 13823* |
A conjugated subgroup is equinumerous to the original subgroup.
(Contributed by Mario Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
| |
| Theorem | conjnmz 13824* |
A subgroup is unchanged under conjugation by an element of its
normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |
| |
| Theorem | conjnmzb 13825* |
Alternative condition for elementhood in the normalizer. (Contributed
by Mario Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹))) |
| |
| Theorem | conjnsg 13826* |
A normal subgroup is unchanged under conjugation. (Contributed by Mario
Carneiro, 18-Jan-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) |
| |
| Theorem | qusghm 13827* |
If 𝑌 is a normal subgroup of 𝐺, then
the "natural map" from
elements to their cosets is a group homomorphism from 𝐺 to
𝐺 /
𝑌. (Contributed by
Mario Carneiro, 14-Jun-2015.) (Revised by
Mario Carneiro, 18-Sep-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| |
| Theorem | ghmpropd 13828* |
Group homomorphism depends only on the group attributes of structures.
(Contributed by Mario Carneiro, 12-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
| |
| 7.2.5 Abelian groups
|
| |
| 7.2.5.1 Definition and basic
properties
|
| |
| Syntax | ccmn 13829 |
Extend class notation with class of all commutative monoids.
|
| class CMnd |
| |
| Syntax | cabl 13830 |
Extend class notation with class of all Abelian groups.
|
| class Abel |
| |
| Definition | df-cmn 13831* |
Define class of all commutative monoids. (Contributed by Mario
Carneiro, 6-Jan-2015.)
|
| ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |
| |
| Definition | df-abl 13832 |
Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.)
(Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ Abel = (Grp ∩ CMnd) |
| |
| Theorem | isabl 13833 |
The predicate "is an Abelian (commutative) group". (Contributed by
NM,
17-Oct-2011.)
|
| ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| |
| Theorem | ablgrp 13834 |
An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
|
| ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| |
| Theorem | ablgrpd 13835 |
An Abelian group is a group, deduction form of ablgrp 13834. (Contributed
by Rohan Ridenour, 3-Aug-2023.)
|
| ⊢ (𝜑 → 𝐺 ∈ Abel)
⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) |
| |
| Theorem | ablcmn 13836 |
An Abelian group is a commutative monoid. (Contributed by Mario Carneiro,
6-Jan-2015.)
|
| ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| |
| Theorem | ablcmnd 13837 |
An Abelian group is a commutative monoid. (Contributed by SN,
1-Jun-2024.)
|
| ⊢ (𝜑 → 𝐺 ∈ Abel)
⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| |
| Theorem | iscmn 13838* |
The predicate "is a commutative monoid". (Contributed by Mario
Carneiro, 6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| |
| Theorem | isabl2 13839* |
The predicate "is an Abelian (commutative) group". (Contributed by
NM,
17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| |
| Theorem | cmnpropd 13840* |
If two structures have the same group components (properties), one is a
commutative monoid iff the other one is. (Contributed by Mario
Carneiro, 6-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
| |
| Theorem | ablpropd 13841* |
If two structures have the same group components (properties), one is an
Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
| |
| Theorem | ablprop 13842 |
If two structures have the same group components (properties), one is an
Abelian group iff the other one is. (Contributed by NM,
11-Oct-2013.)
|
| ⊢ (Base‘𝐾) = (Base‘𝐿)
& ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel) |
| |
| Theorem | iscmnd 13843* |
Properties that determine a commutative monoid. (Contributed by Mario
Carneiro, 7-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| |
| Theorem | isabld 13844* |
Properties that determine an Abelian group. (Contributed by NM,
6-Aug-2013.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ Abel) |
| |
| Theorem | isabli 13845* |
Properties that determine an Abelian group. (Contributed by NM,
4-Sep-2011.)
|
| ⊢ 𝐺 ∈ Grp & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + =
(+g‘𝐺)
& ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ 𝐺 ∈ Abel |
| |
| Theorem | cmnmnd 13846 |
A commutative monoid is a monoid. (Contributed by Mario Carneiro,
6-Jan-2015.)
|
| ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| |
| Theorem | cmncom 13847 |
A commutative monoid is commutative. (Contributed by Mario Carneiro,
6-Jan-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| |
| Theorem | ablcom 13848 |
An Abelian group operation is commutative. (Contributed by NM,
26-Aug-2011.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| |
| Theorem | cmn32 13849 |
Commutative/associative law for commutative monoids. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| |
| Theorem | cmn4 13850 |
Commutative/associative law for commutative monoids. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
| |
| Theorem | cmn12 13851 |
Commutative/associative law for commutative monoids. (Contributed by
Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro,
21-Apr-2016.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
| |
| Theorem | abl32 13852 |
Commutative/associative law for Abelian groups. (Contributed by Stefan
O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| |
| Theorem | cmnmndd 13853 |
A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
|
| ⊢ (𝜑 → 𝐺 ∈ CMnd)
⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| |
| Theorem | rinvmod 13854* |
Uniqueness of a right inverse element in a commutative monoid, if it
exists. Corresponds to caovimo 6205. (Contributed by AV,
31-Dec-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
| |
| Theorem | ablinvadd 13855 |
The inverse of an Abelian group operation. (Contributed by NM,
31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
| |
| Theorem | ablsub2inv 13856 |
Abelian group subtraction of two inverses. (Contributed by Stefan
O'Rear, 24-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
| |
| Theorem | ablsubadd 13857 |
Relationship between Abelian group subtraction and addition.
(Contributed by NM, 31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) |
| |
| Theorem | ablsub4 13858 |
Commutative/associative subtraction law for Abelian groups.
(Contributed by NM, 31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) |
| |
| Theorem | abladdsub4 13859 |
Abelian group addition/subtraction law. (Contributed by NM,
31-Mar-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) |
| |
| Theorem | abladdsub 13860 |
Associative-type law for group subtraction and addition. (Contributed
by NM, 19-Apr-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 − 𝑍) + 𝑌)) |
| |
| Theorem | ablpncan2 13861 |
Cancellation law for subtraction in an Abelian group. (Contributed by
NM, 2-Oct-2014.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) |
| |
| Theorem | ablpncan3 13862 |
A cancellation law for Abelian groups. (Contributed by NM,
23-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑋)) = 𝑌) |
| |
| Theorem | ablsubsub 13863 |
Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) |
| |
| Theorem | ablsubsub4 13864 |
Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
| |
| Theorem | ablpnpcan 13865 |
Cancellation law for mixed addition and subtraction. (pnpcan 8393
analog.) (Contributed by NM, 29-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
| |
| Theorem | ablnncan 13866 |
Cancellation law for group subtraction. (nncan 8383 analog.)
(Contributed by NM, 7-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
| |
| Theorem | ablsub32 13867 |
Swap the second and third terms in a double group subtraction.
(Contributed by NM, 7-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) |
| |
| Theorem | ablnnncan 13868 |
Cancellation law for group subtraction. (nnncan 8389 analog.)
(Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
| |
| Theorem | ablnnncan1 13869 |
Cancellation law for group subtraction. (nnncan1 8390 analog.)
(Contributed by NM, 7-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) |
| |
| Theorem | ablsubsub23 13870 |
Swap subtrahend and result of group subtraction. (Contributed by NM,
14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
|
| ⊢ 𝑉 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
| |
| Theorem | ghmfghm 13871* |
The function fulfilling the conditions of ghmgrp 13663 is a group
homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝑌 = (Base‘𝐻)
& ⊢ + =
(+g‘𝐺)
& ⊢ ⨣ =
(+g‘𝐻)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌)
& ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| |
| Theorem | ghmcmn 13872* |
The image of a commutative monoid 𝐺 under a group homomorphism
𝐹 is a commutative monoid.
(Contributed by Thierry Arnoux,
26-Jan-2020.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝑌 = (Base‘𝐻)
& ⊢ + =
(+g‘𝐺)
& ⊢ ⨣ =
(+g‘𝐻)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌)
& ⊢ (𝜑 → 𝐺 ∈ CMnd)
⇒ ⊢ (𝜑 → 𝐻 ∈ CMnd) |
| |
| Theorem | ghmabl 13873* |
The image of an abelian group 𝐺 under a group homomorphism 𝐹 is
an abelian group. (Contributed by Mario Carneiro, 12-May-2014.)
(Revised by Thierry Arnoux, 26-Jan-2020.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝑌 = (Base‘𝐻)
& ⊢ + =
(+g‘𝐺)
& ⊢ ⨣ =
(+g‘𝐻)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌)
& ⊢ (𝜑 → 𝐺 ∈ Abel)
⇒ ⊢ (𝜑 → 𝐻 ∈ Abel) |
| |
| Theorem | invghm 13874 |
The inversion map is a group automorphism if and only if the group is
abelian. (In general it is only a group homomorphism into the opposite
group, but in an abelian group the opposite group coincides with the
group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺)) |
| |
| Theorem | eqgabl 13875 |
Value of the subgroup coset equivalence relation on an abelian group.
(Contributed by Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝑋 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ ∼ = (𝐺 ~QG 𝑆)
⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| |
| Theorem | qusecsub 13876 |
Two subgroup cosets are equal if and only if the difference of their
representatives is a member of the subgroup. (Contributed by AV,
7-Mar-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ ∼ = (𝐺 ~QG 𝑆)
⇒ ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) |
| |
| Theorem | subgabl 13877 |
A subgroup of an abelian group is also abelian. (Contributed by Mario
Carneiro, 3-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
| |
| Theorem | subcmnd 13878 |
A submonoid of a commutative monoid is also commutative. (Contributed
by Mario Carneiro, 10-Jan-2015.)
|
| ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐻 ∈ CMnd) |
| |
| Theorem | ablnsg 13879 |
Every subgroup of an abelian group is normal. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
| ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
| |
| Theorem | ablressid 13880 |
A commutative group restricted to its base set is a commutative group.
It will usually be the original group exactly, of course, but to show
that needs additional conditions such as those in strressid 13112.
(Contributed by Jim Kingdon, 5-May-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel → (𝐺 ↾s 𝐵) ∈ Abel) |
| |
| Theorem | imasabl 13881* |
The image structure of an abelian group is an abelian group (imasgrp 13656
analog). (Contributed by AV, 22-Feb-2025.)
|
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + =
(+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵)
& ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Abel) & ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Abel ∧ (𝐹‘ 0 ) =
(0g‘𝑈))) |
| |
| 7.2.5.2 Group sum operation
|
| |
| Theorem | gsumfzreidx 13882 |
Re-index a finite group sum using a bijection. Corresponds to the first
equation in [Lang] p. 5 with 𝑀 = 1.
(Contributed by AV,
26-Dec-2023.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵)
& ⊢ (𝜑 → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |
| |
| Theorem | gsumfzsubmcl 13883 |
Closure of a group sum in a submonoid. (Contributed by Mario Carneiro,
10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon,
30-Aug-2025.)
|
| ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝑆) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
| |
| Theorem | gsumfzmptfidmadd 13884* |
The sum of two group sums expressed as mappings with finite domain.
(Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon,
31-Aug-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵)
& ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)
& ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| |
| Theorem | gsumfzmptfidmadd2 13885* |
The sum of two group sums expressed as mappings with finite domain,
using a function operation. (Contributed by AV, 23-Jul-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵)
& ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)
& ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| |
| Theorem | gsumfzconst 13886* |
Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.)
(Revised by Jim Kingdon, 6-Sep-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)) |
| |
| Theorem | gsumfzconstf 13887* |
Sum of a constant series. (Contributed by Thierry Arnoux,
5-Jul-2017.)
|
| ⊢ Ⅎ𝑘𝑋
& ⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)) |
| |
| Theorem | gsumfzmhm 13888 |
Apply a monoid homomorphism to a group sum. (Contributed by Mario
Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim
Kingdon, 8-Sep-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| |
| Theorem | gsumfzmhm2 13889* |
Apply a group homomorphism to a group sum, mapping version with implicit
substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by
AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵)
& ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷)
& ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| |
| Theorem | gsumfzsnfd 13890* |
Group sum of a singleton, deduction form, using bound-variable
hypotheses instead of distinct variable conditions. (Contributed by
Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux,
28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
|
| ⊢ 𝐵 = (Base‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶)
& ⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐶 ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| |
| 7.3 Rings
|
| |
| 7.3.1 Multiplicative Group
|
| |
| Syntax | cmgp 13891 |
Multiplicative group.
|
| class mulGrp |
| |
| Definition | df-mgp 13892 |
Define a structure that puts the multiplication operation of a ring in the
addition slot. Note that this will not actually be a group for the
average ring, or even for a field, but it will be a monoid, and we get a
group if we restrict to the elements that have inverses. This allows us
to formalize such notions as "the multiplication operation of a ring
is a
monoid" or "the multiplicative identity" in terms of the
identity of a
monoid (df-ur 13931). (Contributed by Mario Carneiro,
21-Dec-2014.)
|
| ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx),
(.r‘𝑤)〉)) |
| |
| Theorem | fnmgp 13893 |
The multiplicative group operator is a function. (Contributed by Mario
Carneiro, 11-Mar-2015.)
|
| ⊢ mulGrp Fn V |
| |
| Theorem | mgpvalg 13894 |
Value of the multiplication group operation. (Contributed by Mario
Carneiro, 21-Dec-2014.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx),
·
〉)) |
| |
| Theorem | mgpplusgg 13895 |
Value of the group operation of the multiplication group. (Contributed
by Mario Carneiro, 21-Dec-2014.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → · =
(+g‘𝑀)) |
| |
| Theorem | mgpex 13896 |
Existence of the multiplication group. If 𝑅 is known to be a
semiring, see srgmgp 13939. (Contributed by Jim Kingdon,
10-Jan-2025.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) |
| |
| Theorem | mgpbasg 13897 |
Base set of the multiplication group. (Contributed by Mario Carneiro,
21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
| |
| Theorem | mgpscag 13898 |
The multiplication monoid has the same (if any) scalars as the
original ring. (Contributed by Mario Carneiro, 12-Mar-2015.)
(Revised by Mario Carneiro, 5-May-2015.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅)
& ⊢ 𝑆 = (Scalar‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (Scalar‘𝑀)) |
| |
| Theorem | mgptsetg 13899 |
Topology component of the multiplication group. (Contributed by Mario
Carneiro, 5-Oct-2015.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
| |
| Theorem | mgptopng 13900 |
Topology of the multiplication group. (Contributed by Mario Carneiro,
5-Oct-2015.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅)
& ⊢ 𝐽 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |